Cargando…
An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems
The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-po...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713038/ https://www.ncbi.nlm.nih.gov/pubmed/29125586 http://dx.doi.org/10.3390/s17112591 |
_version_ | 1783283332127129600 |
---|---|
author | Vanarse, Anup Osseiran, Adam Rassau, Alexander |
author_facet | Vanarse, Anup Osseiran, Adam Rassau, Alexander |
author_sort | Vanarse, Anup |
collection | PubMed |
description | The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses. |
format | Online Article Text |
id | pubmed-5713038 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-57130382017-12-07 An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems Vanarse, Anup Osseiran, Adam Rassau, Alexander Sensors (Basel) Review The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses. MDPI 2017-11-10 /pmc/articles/PMC5713038/ /pubmed/29125586 http://dx.doi.org/10.3390/s17112591 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Vanarse, Anup Osseiran, Adam Rassau, Alexander An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems |
title | An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems |
title_full | An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems |
title_fullStr | An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems |
title_full_unstemmed | An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems |
title_short | An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems |
title_sort | investigation into spike-based neuromorphic approaches for artificial olfactory systems |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713038/ https://www.ncbi.nlm.nih.gov/pubmed/29125586 http://dx.doi.org/10.3390/s17112591 |
work_keys_str_mv | AT vanarseanup aninvestigationintospikebasedneuromorphicapproachesforartificialolfactorysystems AT osseiranadam aninvestigationintospikebasedneuromorphicapproachesforartificialolfactorysystems AT rassaualexander aninvestigationintospikebasedneuromorphicapproachesforartificialolfactorysystems AT vanarseanup investigationintospikebasedneuromorphicapproachesforartificialolfactorysystems AT osseiranadam investigationintospikebasedneuromorphicapproachesforartificialolfactorysystems AT rassaualexander investigationintospikebasedneuromorphicapproachesforartificialolfactorysystems |