Cargando…
Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features,...
Autores principales: | Liu, Aiming, Chen, Kun, Liu, Quan, Ai, Qingsong, Xie, Yi, Chen, Anqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713053/ https://www.ncbi.nlm.nih.gov/pubmed/29117100 http://dx.doi.org/10.3390/s17112576 |
Ejemplares similares
-
EEG feature comparison and classification of simple and compound limb motor imagery
por: Yi, Weibo, et al.
Publicado: (2013) -
Comparison of EEG-Features and Classification Methods for Motor Imagery in Patients with Disorders of Consciousness
por: Höller, Yvonne, et al.
Publicado: (2013) -
Motor Imagery EEG Classification Using Capsule Networks†
por: Ha, Kwon-Woo, et al.
Publicado: (2019) -
Correction: Comparison of EEG-Features and Classification Methods for Motor Imagery in Patients with Disorders of Consciousness
Publicado: (2014) -
Subject-Independent EEG Classification of Motor Imagery Based on Dual-Branch Feature Fusion
por: Dong, Yanqing, et al.
Publicado: (2023)