Cargando…
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to...
Autores principales: | Lee, Dong-Han, Ahn, Jong-Hyo, Koh, Bong-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713071/ https://www.ncbi.nlm.nih.gov/pubmed/29143772 http://dx.doi.org/10.3390/s17112477 |
Ejemplares similares
-
Fault Detection of Roller-Bearings Using Signal Processing and Optimization Algorithms
por: Kwak, Dae-Ho, et al.
Publicado: (2013) -
Fault Detection of a Roller-Bearing System through the EMD of a Wavelet Denoised Signal
por: Ahn, Jong-Hyo, et al.
Publicado: (2014) -
EEMD-Based Steady-State Indexes and Their Applications to Condition Monitoring and Fault Diagnosis of Railway Axle Bearings
por: Yi, Cai, et al.
Publicado: (2018) -
A Rolling Bearing Fault Diagnosis Method Based on EEMD-WSST Signal Reconstruction and Multi-Scale Entropy
por: Ge, Jianghua, et al.
Publicado: (2020) -
Fault Diagnosis for Analog Circuits by Using EEMD, Relative Entropy, and ELM
por: Xiong, Jian, et al.
Publicado: (2016)