Cargando…
Linear vs. Nonlinear Extreme Learning Machine for Spectral-Spatial Classification of Hyperspectral Images
As a new machine learning approach, the extreme learning machine (ELM) has received much attention due to its good performance. However, when directly applied to hyperspectral image (HSI) classification, the recognition rate is low. This is because ELM does not use spatial information, which is very...
Autores principales: | Cao, Faxian, Yang, Zhijing, Ren, Jinchang, Jiang, Mengying, Ling, Wing-Kuen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713108/ https://www.ncbi.nlm.nih.gov/pubmed/29137159 http://dx.doi.org/10.3390/s17112603 |
Ejemplares similares
-
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
por: Dang, Lanxue, et al.
Publicado: (2022) -
Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification
por: Liu, Da, et al.
Publicado: (2016) -
Deep Belief Network for Spectral–Spatial Classification of Hyperspectral Remote Sensor Data
por: Li, Chenming, et al.
Publicado: (2019) -
Spatial Spectral Band Selection for Enhanced Hyperspectral Remote Sensing Classification Applications
por: Torres, Ruben Moya, et al.
Publicado: (2020)