Cargando…
Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments
Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorit...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713159/ https://www.ncbi.nlm.nih.gov/pubmed/29077071 http://dx.doi.org/10.3390/s17112469 |
_version_ | 1783283360951435264 |
---|---|
author | Gennarelli, Gianluca Al Khatib, Obada Soldovieri, Francesco |
author_facet | Gennarelli, Gianluca Al Khatib, Obada Soldovieri, Francesco |
author_sort | Gennarelli, Gianluca |
collection | PubMed |
description | Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorithms have been developed in recent years, indoor positioning is still a problem subject of intensive research. This paper deals with the active radio-frequency (RF) source localization in indoor scenarios. The localization task is carried out at the physical layer thanks to receiving sensor arrays which are deployed on the border of the surveillance region to record the signal emitted by the source. The localization problem is formulated as an imaging one by taking advantage of the inverse source approach. Different measurement configurations and data-processing/fusion strategies are examined to investigate their effectiveness in terms of localization accuracy under both line-of-sight (LOS) and non-line of sight (NLOS) conditions. Numerical results based on full-wave synthetic data are reported to support the analysis. |
format | Online Article Text |
id | pubmed-5713159 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-57131592017-12-07 Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments Gennarelli, Gianluca Al Khatib, Obada Soldovieri, Francesco Sensors (Basel) Article Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorithms have been developed in recent years, indoor positioning is still a problem subject of intensive research. This paper deals with the active radio-frequency (RF) source localization in indoor scenarios. The localization task is carried out at the physical layer thanks to receiving sensor arrays which are deployed on the border of the surveillance region to record the signal emitted by the source. The localization problem is formulated as an imaging one by taking advantage of the inverse source approach. Different measurement configurations and data-processing/fusion strategies are examined to investigate their effectiveness in terms of localization accuracy under both line-of-sight (LOS) and non-line of sight (NLOS) conditions. Numerical results based on full-wave synthetic data are reported to support the analysis. MDPI 2017-10-27 /pmc/articles/PMC5713159/ /pubmed/29077071 http://dx.doi.org/10.3390/s17112469 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gennarelli, Gianluca Al Khatib, Obada Soldovieri, Francesco Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments |
title | Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments |
title_full | Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments |
title_fullStr | Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments |
title_full_unstemmed | Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments |
title_short | Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments |
title_sort | inverse source data-processing strategies for radio-frequency localization in indoor environments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713159/ https://www.ncbi.nlm.nih.gov/pubmed/29077071 http://dx.doi.org/10.3390/s17112469 |
work_keys_str_mv | AT gennarelligianluca inversesourcedataprocessingstrategiesforradiofrequencylocalizationinindoorenvironments AT alkhatibobada inversesourcedataprocessingstrategiesforradiofrequencylocalizationinindoorenvironments AT soldovierifrancesco inversesourcedataprocessingstrategiesforradiofrequencylocalizationinindoorenvironments |