Cargando…
Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC. in Tobacco Plants
In this study, we cloned a new chitinase gene, EuCHIT2, from Eucommia ulmoides Oliver (E. ulmoides) using rapid amplification of cDNA ends (RACE) technology and constructed an overexpression vector, pSH-35S-EuCHIT2, to introduce it into tobacco (Nicotiana tabacum cv. Xanthi). Resistance to Erysiphe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713330/ https://www.ncbi.nlm.nih.gov/pubmed/29112167 http://dx.doi.org/10.3390/ijms18112361 |
_version_ | 1783283399764475904 |
---|---|
author | Dong, Xuan Zhao, Yichen Ran, Xin Guo, Linxia Zhao, De-Gang |
author_facet | Dong, Xuan Zhao, Yichen Ran, Xin Guo, Linxia Zhao, De-Gang |
author_sort | Dong, Xuan |
collection | PubMed |
description | In this study, we cloned a new chitinase gene, EuCHIT2, from Eucommia ulmoides Oliver (E. ulmoides) using rapid amplification of cDNA ends (RACE) technology and constructed an overexpression vector, pSH-35S-EuCHIT2, to introduce it into tobacco (Nicotiana tabacum cv. Xanthi). Resistance to Erysiphe cichoracearum de Candolle (E. cichoracearum DC.) and molecular mechanisms in the transgenic tobacco were determined by drop inoculation, spore counting, determination of physicochemical indicators, and analysis of gene expression. The chitinase activity and resistance to E. cichoracearum DC. were significantly higher in the transgenic tobacco than in wild-type tobacco (p < 0.05). The activities of peroxidase (POD) and catalase (CAT), after inoculation with E. cichoracearum DC., were higher in the transgenic tobacco than in the wild-type. Conversely, the malondialdehyde (MDA) content was significantly lower in the transgenic tobacco than the wild-type before and after inoculation. In addition, our study also indicated that the resistance to E. cichoracearum DC. might involve the salicylic acid (SA) and jasmonic acid (JA) pathways, because the expression levels of pathogenesis-related gene 1 (PR-1a) and coronatine-insensitive 1 (COI1) were significantly increased and decreased, respectively, after inoculation with E. cichoracearum DC. The present study supports the notion that PR-1a and POD participate in resistance to E. cichoracearum DC. in the transgenic tobacco plants. |
format | Online Article Text |
id | pubmed-5713330 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-57133302017-12-07 Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC. in Tobacco Plants Dong, Xuan Zhao, Yichen Ran, Xin Guo, Linxia Zhao, De-Gang Int J Mol Sci Article In this study, we cloned a new chitinase gene, EuCHIT2, from Eucommia ulmoides Oliver (E. ulmoides) using rapid amplification of cDNA ends (RACE) technology and constructed an overexpression vector, pSH-35S-EuCHIT2, to introduce it into tobacco (Nicotiana tabacum cv. Xanthi). Resistance to Erysiphe cichoracearum de Candolle (E. cichoracearum DC.) and molecular mechanisms in the transgenic tobacco were determined by drop inoculation, spore counting, determination of physicochemical indicators, and analysis of gene expression. The chitinase activity and resistance to E. cichoracearum DC. were significantly higher in the transgenic tobacco than in wild-type tobacco (p < 0.05). The activities of peroxidase (POD) and catalase (CAT), after inoculation with E. cichoracearum DC., were higher in the transgenic tobacco than in the wild-type. Conversely, the malondialdehyde (MDA) content was significantly lower in the transgenic tobacco than the wild-type before and after inoculation. In addition, our study also indicated that the resistance to E. cichoracearum DC. might involve the salicylic acid (SA) and jasmonic acid (JA) pathways, because the expression levels of pathogenesis-related gene 1 (PR-1a) and coronatine-insensitive 1 (COI1) were significantly increased and decreased, respectively, after inoculation with E. cichoracearum DC. The present study supports the notion that PR-1a and POD participate in resistance to E. cichoracearum DC. in the transgenic tobacco plants. MDPI 2017-11-07 /pmc/articles/PMC5713330/ /pubmed/29112167 http://dx.doi.org/10.3390/ijms18112361 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dong, Xuan Zhao, Yichen Ran, Xin Guo, Linxia Zhao, De-Gang Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC. in Tobacco Plants |
title | Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC. in Tobacco Plants |
title_full | Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC. in Tobacco Plants |
title_fullStr | Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC. in Tobacco Plants |
title_full_unstemmed | Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC. in Tobacco Plants |
title_short | Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC. in Tobacco Plants |
title_sort | overexpression of a new chitinase gene euchit2 enhances resistance to erysiphe cichoracearum dc. in tobacco plants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713330/ https://www.ncbi.nlm.nih.gov/pubmed/29112167 http://dx.doi.org/10.3390/ijms18112361 |
work_keys_str_mv | AT dongxuan overexpressionofanewchitinasegeneeuchit2enhancesresistancetoerysiphecichoracearumdcintobaccoplants AT zhaoyichen overexpressionofanewchitinasegeneeuchit2enhancesresistancetoerysiphecichoracearumdcintobaccoplants AT ranxin overexpressionofanewchitinasegeneeuchit2enhancesresistancetoerysiphecichoracearumdcintobaccoplants AT guolinxia overexpressionofanewchitinasegeneeuchit2enhancesresistancetoerysiphecichoracearumdcintobaccoplants AT zhaodegang overexpressionofanewchitinasegeneeuchit2enhancesresistancetoerysiphecichoracearumdcintobaccoplants |