Cargando…
Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV)
Water stress, which affects yield and wine quality, is often evaluated using the midday stem water potential (Ψ(stem)). However, this measurement is acquired on a per plant basis and does not account for the assessment of vine water status spatial variability. The use of multispectral cameras mounte...
Autores principales: | Poblete, Tomas, Ortega-Farías, Samuel, Moreno, Miguel Angel, Bardeen, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713508/ https://www.ncbi.nlm.nih.gov/pubmed/29084169 http://dx.doi.org/10.3390/s17112488 |
Ejemplares similares
-
Multispectral Detection of Commercial Unmanned Aerial Vehicles
por: Farlik, Jan, et al.
Publicado: (2019) -
Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation
por: Gonzalez, Luis F., et al.
Publicado: (2016) -
Unmanned Aerial Vehicles (UAVs) for Physical Progress Monitoring of Construction
por: Jacob-Loyola, Nicolás, et al.
Publicado: (2021) -
Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV)
por: Zhang, Jinshui, et al.
Publicado: (2018) -
UAV-YOLO: Small Object Detection on Unmanned Aerial Vehicle Perspective
por: Liu, Mingjie, et al.
Publicado: (2020)