Cargando…

Cooperative RecA clustering: the key to efficient homology searching

The mechanism by which pre-synaptic RecA nucleoprotein filaments efficiently locate sequence homology across genomic DNA remains unclear. Here, using atomic force microscopy, we directly investigate the intermediates of the RecA-mediated homologous recombination process and find it to be highly coop...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Andrew J., Sharma, Rajan, Hobbs, Jamie K., Wälti, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714135/
https://www.ncbi.nlm.nih.gov/pubmed/28977583
http://dx.doi.org/10.1093/nar/gkx769
Descripción
Sumario:The mechanism by which pre-synaptic RecA nucleoprotein filaments efficiently locate sequence homology across genomic DNA remains unclear. Here, using atomic force microscopy, we directly investigate the intermediates of the RecA-mediated homologous recombination process and find it to be highly cooperative, involving multiple phases. Initially, the process is dominated by a rapid ‘association’ phase, where multiple filaments interact on the same dsDNA simultaneously. This cooperative nature is reconciled by the observation of localized dense clusters of pre-synaptic filaments interacting with the observed dsDNA molecules. This confinement of reactive species within the vicinity of the dsDNA, is likely to play an important role in ensuring that a high interaction rate between the nucleoprotein filaments and the dsDNA can be achieved. This is followed by a slower ‘resolution’ phase, where the synaptic joints either locate sequence homology and progress to a post-synaptic joint, or dissociate from the dsDNA. Surprisingly, the number of simultaneous synaptic joints decreases rapidly after saturation of the dsDNA population, suggesting a reduction in interaction activity of the RecA filaments. We find that the time-scale of this decay is in line with the time-scale of the dispersion of the RecA filament clusters, further emphasising the important role this cooperative phenomena may play in the RecA-facilitated homology search.