Cargando…
Towards enhanced and interpretable clustering/classification in integrative genomics
High-throughput technologies have led to large collections of different types of biological data that provide unprecedented opportunities to unravel molecular heterogeneity of biological processes. Nevertheless, how to jointly explore data from multiple sources into a holistic, biologically meaningf...
Autores principales: | Lu, Yang Young, Lv, Jinchi, Fuhrman, Jed A., Sun, Fengzhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714251/ https://www.ncbi.nlm.nih.gov/pubmed/28977511 http://dx.doi.org/10.1093/nar/gkx767 |
Ejemplares similares
-
Co-clustering phenome–genome for phenotype classification and disease gene discovery
por: Hwang, TaeHyun, et al.
Publicado: (2012) -
Integrating convolution and self-attention improves language model of human genome for interpreting non-coding regions at base-resolution
por: Yang, Meng, et al.
Publicado: (2022) -
Interpreting genomic data via entropic dissection
por: Azad, Rajeev K., et al.
Publicado: (2013) -
seqMINER: an integrated ChIP-seq data interpretation platform
por: Ye, Tao, et al.
Publicado: (2011) -
Interpretation of network-based integration from multi-omics longitudinal data
por: Bodein, Antoine, et al.
Publicado: (2021)