Cargando…

Hybrid precoding based on matrix-adaptive method for multiuser large-scale antenna arrays

Massive multiple-input multiple-output (MIMO) is envisioned to offer a considerable improvement in capacity, but it has a high cost and the radio frequency (RF) chain components have a high power consumption at high frequency. To address this problem, a hybrid analog and digital precoding scheme has...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Yongpan, Kim, Suk Chan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714346/
https://www.ncbi.nlm.nih.gov/pubmed/29206235
http://dx.doi.org/10.1371/journal.pone.0188723
Descripción
Sumario:Massive multiple-input multiple-output (MIMO) is envisioned to offer a considerable improvement in capacity, but it has a high cost and the radio frequency (RF) chain components have a high power consumption at high frequency. To address this problem, a hybrid analog and digital precoding scheme has been studied recently, which restricts the number of RF chains to far less than the number of antenna elements. In this paper, we consider the downlink communication of a massive multiuser multiple-input single-output (MU-MISO) system and propose an iterative hybrid precoding algorithm to approach the capacity performance of the traditional full digital precoding scheme. We aim to attain a large baseband gain by zero-forcing (ZF) digital precoding on the equivalent channel and then minimize the total power to obtain the optimal RF precoder. Simulation results show that the proposed method can approach the performance of the conventional fully digital precoding with a low computational complexity.