Cargando…

Evaluation of inhomogeneity correction factors for 6 MV flattening filter‐free beams with brass compensators

The 6 MV flattening filter‐free (FFF) beam has been commissioned for use with compensators at our institution. This novel combination promises advantages in mitigating tumor motion due to the reduced treatment time made possible by the greatly increased dose rate of the FFF beam. Given the different...

Descripción completa

Detalles Bibliográficos
Autores principales: Robinson, Joshua, Opp, Daniel, Zhang, Geoffrey, Feygelman, Vladimir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714406/
https://www.ncbi.nlm.nih.gov/pubmed/23652238
http://dx.doi.org/10.1120/jacmp.v14i3.3990
_version_ 1783283581107306496
author Robinson, Joshua
Opp, Daniel
Zhang, Geoffrey
Feygelman, Vladimir
author_facet Robinson, Joshua
Opp, Daniel
Zhang, Geoffrey
Feygelman, Vladimir
author_sort Robinson, Joshua
collection PubMed
description The 6 MV flattening filter‐free (FFF) beam has been commissioned for use with compensators at our institution. This novel combination promises advantages in mitigating tumor motion due to the reduced treatment time made possible by the greatly increased dose rate of the FFF beam. Given the different energy spectrum of the FFF beam and the beam hardening effect of the compensator, the accuracy of the treatment planning system (TPS) model in the presence of low‐density heterogeneities cannot be assumed. Therefore, inhomogeneity correction factors (ICF) for an FFF beam attenuated by brass slabs were measured and compared to the TPS calculations in this work. The ICF is the ratio of the point dose in the presence of inhomogeneity to the dose in the same point in a homogeneous medium. The ICFs were measured with an ion chamber at a number of points in a flat water‐equivalent slab phantom containing a 7.5 cm deep heterogeneity (air or [Formula: see text] wood). Comparisons for the FFF beam were carried out for the field sizes from [Formula: see text] to [Formula: see text] with the brass slabs ranging from 0 to 5 cm in thickness. For a low‐density wood heterogeneity in a slab phantom, with the exception of the point 1 cm beyond the proximal buildup interface, the TPS handles the inhomogeneity correction with the brass‐filtered 6 MV FFF beam at the requisite 2% error level. The combinations of field sizes and compensator thicknesses when the error exceeds 2% (2.6% maximum) are not likely to be experienced in clinical practice. In terms of heterogeneity corrections, the beam model is adequate for clinical use. PACS number: 87.56.ng
format Online
Article
Text
id pubmed-5714406
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-57144062018-04-02 Evaluation of inhomogeneity correction factors for 6 MV flattening filter‐free beams with brass compensators Robinson, Joshua Opp, Daniel Zhang, Geoffrey Feygelman, Vladimir J Appl Clin Med Phys Technical Notes The 6 MV flattening filter‐free (FFF) beam has been commissioned for use with compensators at our institution. This novel combination promises advantages in mitigating tumor motion due to the reduced treatment time made possible by the greatly increased dose rate of the FFF beam. Given the different energy spectrum of the FFF beam and the beam hardening effect of the compensator, the accuracy of the treatment planning system (TPS) model in the presence of low‐density heterogeneities cannot be assumed. Therefore, inhomogeneity correction factors (ICF) for an FFF beam attenuated by brass slabs were measured and compared to the TPS calculations in this work. The ICF is the ratio of the point dose in the presence of inhomogeneity to the dose in the same point in a homogeneous medium. The ICFs were measured with an ion chamber at a number of points in a flat water‐equivalent slab phantom containing a 7.5 cm deep heterogeneity (air or [Formula: see text] wood). Comparisons for the FFF beam were carried out for the field sizes from [Formula: see text] to [Formula: see text] with the brass slabs ranging from 0 to 5 cm in thickness. For a low‐density wood heterogeneity in a slab phantom, with the exception of the point 1 cm beyond the proximal buildup interface, the TPS handles the inhomogeneity correction with the brass‐filtered 6 MV FFF beam at the requisite 2% error level. The combinations of field sizes and compensator thicknesses when the error exceeds 2% (2.6% maximum) are not likely to be experienced in clinical practice. In terms of heterogeneity corrections, the beam model is adequate for clinical use. PACS number: 87.56.ng John Wiley and Sons Inc. 2013-05-06 /pmc/articles/PMC5714406/ /pubmed/23652238 http://dx.doi.org/10.1120/jacmp.v14i3.3990 Text en © 2013 The Authors. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/3.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Technical Notes
Robinson, Joshua
Opp, Daniel
Zhang, Geoffrey
Feygelman, Vladimir
Evaluation of inhomogeneity correction factors for 6 MV flattening filter‐free beams with brass compensators
title Evaluation of inhomogeneity correction factors for 6 MV flattening filter‐free beams with brass compensators
title_full Evaluation of inhomogeneity correction factors for 6 MV flattening filter‐free beams with brass compensators
title_fullStr Evaluation of inhomogeneity correction factors for 6 MV flattening filter‐free beams with brass compensators
title_full_unstemmed Evaluation of inhomogeneity correction factors for 6 MV flattening filter‐free beams with brass compensators
title_short Evaluation of inhomogeneity correction factors for 6 MV flattening filter‐free beams with brass compensators
title_sort evaluation of inhomogeneity correction factors for 6 mv flattening filter‐free beams with brass compensators
topic Technical Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714406/
https://www.ncbi.nlm.nih.gov/pubmed/23652238
http://dx.doi.org/10.1120/jacmp.v14i3.3990
work_keys_str_mv AT robinsonjoshua evaluationofinhomogeneitycorrectionfactorsfor6mvflatteningfilterfreebeamswithbrasscompensators
AT oppdaniel evaluationofinhomogeneitycorrectionfactorsfor6mvflatteningfilterfreebeamswithbrasscompensators
AT zhanggeoffrey evaluationofinhomogeneitycorrectionfactorsfor6mvflatteningfilterfreebeamswithbrasscompensators
AT feygelmanvladimir evaluationofinhomogeneitycorrectionfactorsfor6mvflatteningfilterfreebeamswithbrasscompensators