Cargando…
ARSDA: A New Approach for Storing, Transmitting and Analyzing Transcriptomic Data
Two major stumbling blocks exist in high-throughput sequencing (HTS) data analysis. The first is the sheer file size, typically in gigabytes when uncompressed, causing problems in storage, transmission, and analysis. However, these files do not need to be so large, and can be reduced without loss of...
Autor principal: | Xia, Xuhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714481/ https://www.ncbi.nlm.nih.gov/pubmed/29079682 http://dx.doi.org/10.1534/g3.117.300271 |
Ejemplares similares
-
Storing and analyzing a genome on a blockchain
por: Gürsoy, Gamze, et al.
Publicado: (2022) -
A Deep Learning Approach for Detecting Copy Number Variation in Next-Generation Sequencing Data
por: Hill, Tom, et al.
Publicado: (2019) -
DAMBE7: New and Improved Tools for Data Analysis in Molecular Biology and Evolution
por: Xia, Xuhua
Publicado: (2018) -
DraGnET: Software for storing, managing and analyzing annotated draft genome sequence data
por: Duncan, Stacy, et al.
Publicado: (2010) -
Efficient approaches for large-scale GWAS with genotype uncertainty
por: Jørsboe, Emil, et al.
Publicado: (2021)