Cargando…

Plasmonic tunnel junctions for single-molecule redox chemistry

Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathwa...

Descripción completa

Detalles Bibliográficos
Autores principales: de Nijs, Bart, Benz, Felix, Barrow, Steven J., Sigle, Daniel O., Chikkaraddy, Rohit, Palma, Aniello, Carnegie, Cloudy, Kamp, Marlous, Sundararaman, Ravishankar, Narang, Prineha, Scherman, Oren A., Baumberg, Jeremy J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714966/
https://www.ncbi.nlm.nih.gov/pubmed/29057870
http://dx.doi.org/10.1038/s41467-017-00819-7
_version_ 1783283659159109632
author de Nijs, Bart
Benz, Felix
Barrow, Steven J.
Sigle, Daniel O.
Chikkaraddy, Rohit
Palma, Aniello
Carnegie, Cloudy
Kamp, Marlous
Sundararaman, Ravishankar
Narang, Prineha
Scherman, Oren A.
Baumberg, Jeremy J.
author_facet de Nijs, Bart
Benz, Felix
Barrow, Steven J.
Sigle, Daniel O.
Chikkaraddy, Rohit
Palma, Aniello
Carnegie, Cloudy
Kamp, Marlous
Sundararaman, Ravishankar
Narang, Prineha
Scherman, Oren A.
Baumberg, Jeremy J.
author_sort de Nijs, Bart
collection PubMed
description Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level.
format Online
Article
Text
id pubmed-5714966
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-57149662017-12-06 Plasmonic tunnel junctions for single-molecule redox chemistry de Nijs, Bart Benz, Felix Barrow, Steven J. Sigle, Daniel O. Chikkaraddy, Rohit Palma, Aniello Carnegie, Cloudy Kamp, Marlous Sundararaman, Ravishankar Narang, Prineha Scherman, Oren A. Baumberg, Jeremy J. Nat Commun Article Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level. Nature Publishing Group UK 2017-10-20 /pmc/articles/PMC5714966/ /pubmed/29057870 http://dx.doi.org/10.1038/s41467-017-00819-7 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
de Nijs, Bart
Benz, Felix
Barrow, Steven J.
Sigle, Daniel O.
Chikkaraddy, Rohit
Palma, Aniello
Carnegie, Cloudy
Kamp, Marlous
Sundararaman, Ravishankar
Narang, Prineha
Scherman, Oren A.
Baumberg, Jeremy J.
Plasmonic tunnel junctions for single-molecule redox chemistry
title Plasmonic tunnel junctions for single-molecule redox chemistry
title_full Plasmonic tunnel junctions for single-molecule redox chemistry
title_fullStr Plasmonic tunnel junctions for single-molecule redox chemistry
title_full_unstemmed Plasmonic tunnel junctions for single-molecule redox chemistry
title_short Plasmonic tunnel junctions for single-molecule redox chemistry
title_sort plasmonic tunnel junctions for single-molecule redox chemistry
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714966/
https://www.ncbi.nlm.nih.gov/pubmed/29057870
http://dx.doi.org/10.1038/s41467-017-00819-7
work_keys_str_mv AT denijsbart plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT benzfelix plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT barrowstevenj plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT sigledanielo plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT chikkaraddyrohit plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT palmaaniello plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT carnegiecloudy plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT kampmarlous plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT sundararamanravishankar plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT narangprineha plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT schermanorena plasmonictunneljunctionsforsinglemoleculeredoxchemistry
AT baumbergjeremyj plasmonictunneljunctionsforsinglemoleculeredoxchemistry