Cargando…
Construction of a system using a deep learning algorithm to count cell numbers in nanoliter wells for viable single-cell experiments
For single-cell experiments, it is important to accurately count the number of viable cells in a nanoliter well. We used a deep learning-based convolutional neural network (CNN) on a large amount of digital data obtained as microscopic images. The training set consisted of 103 019 samples, each repr...
Autores principales: | Kamatani, Takashi, Fukunaga, Koichi, Miyata, Kaede, Shirasaki, Yoshitaka, Tanaka, Junji, Baba, Rie, Matsusaka, Masako, Kamatani, Naoyuki, Moro, Kazuyo, Betsuyaku, Tomoko, Uemura, Sotaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715092/ https://www.ncbi.nlm.nih.gov/pubmed/29203784 http://dx.doi.org/10.1038/s41598-017-17012-x |
Ejemplares similares
-
Upregulation of IL-4 receptor signaling pathway in circulating ILC2s from asthma patients
por: Baba, Rie, et al.
Publicado: (2022) -
Time-dependent cell-state selection identifies transiently expressed genes regulating ILC2 activation
por: Tanaka, Yumiko, et al.
Publicado: (2023) -
Amyloid Formation in Nanoliter Droplets
por: Cheong, Da Yeon, et al.
Publicado: (2022) -
Cellular and soluble components decrease the viable pathogen counts in milk
from dairy cows with subclinical mastitis
por: KOSHIISHI, Tomoko, et al.
Publicado: (2017) -
Nanoliter high throughput quantitative PCR
por: Morrison, Tom, et al.
Publicado: (2006)