Cargando…
Syndromic Surveillance Models Using Web Data: The Case of Influenza in Greece and Italy Using Google Trends
BACKGROUND: An extended discussion and research has been performed in recent years using data collected through search queries submitted via the Internet. It has been shown that the overall activity on the Internet is related to the number of cases of an infectious disease outbreak. OBJECTIVE: The a...
Autores principales: | Samaras, Loukas, García-Barriocanal, Elena, Sicilia, Miguel-Angel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715201/ https://www.ncbi.nlm.nih.gov/pubmed/29158208 http://dx.doi.org/10.2196/publichealth.8015 |
Ejemplares similares
-
Syndromic surveillance using web data: a systematic review
por: Samaras, Loukas, et al.
Publicado: (2020) -
Sentiment analysis of COVID-19 cases in Greece using Twitter data
por: Samaras, Loukas, et al.
Publicado: (2023) -
Comparing Social media and Google to detect and predict severe epidemics
por: Samaras, Loukas, et al.
Publicado: (2020) -
Predicting epidemics using search engine data: a comparative study on measles in the largest countries of Europe
por: Samaras, Loukas, et al.
Publicado: (2021) -
Using Google Trends for Influenza Surveillance in South China
por: Kang, Min, et al.
Publicado: (2013)