Cargando…

Inactivated Sendai virus particle upregulates cancer cell expression of intercellular adhesion molecule‐1 and enhances natural killer cell sensitivity on cancer cells

We have already reported that the inactivated Sendai virus (hemagglutinating virus of Japan; HVJ) envelope (HVJ‐E) has multiple anticancer effects, including induction of cancer‐selective cell death and activation of anticancer immunity. The HVJ‐E stimulates dendritic cells to produce cytokines and...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Simin, Nishikawa, Tomoyuki, Kaneda, Yasufumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715349/
https://www.ncbi.nlm.nih.gov/pubmed/28945328
http://dx.doi.org/10.1111/cas.13408
Descripción
Sumario:We have already reported that the inactivated Sendai virus (hemagglutinating virus of Japan; HVJ) envelope (HVJ‐E) has multiple anticancer effects, including induction of cancer‐selective cell death and activation of anticancer immunity. The HVJ‐E stimulates dendritic cells to produce cytokines and chemokines such as β‐interferon, interleukin‐6, chemokine (C‐C motif) ligand 5, and chemokine (C‐X‐C motif) ligand 10, which activate both CD8(+) T cells and natural killer (NK) cells and recruit them to the tumor microenvironment. However, the effect of HVJ‐E on modulating the sensitivity of cancer cells to immune cell attack has yet to be investigated. In this study, we found that HVJ‐E induced the production of intercellular adhesion molecule‐1 (ICAM‐1, CD54), a ligand of lymphocyte function‐associated antigen 1, in several cancer cell lines through the activation of nuclear factor‐κB downstream of retinoic acid‐inducible gene I and the mitochondrial antiviral signaling pathway. The upregulation of ICAM‐1 on the surface of cancer cells increased the sensitivity of cancer cells to NK cells. Knocking out expression of ICAM‐1 in MDA‐MB‐231 cells using the CRISPR/Cas9 method significantly reduced the killing effect of NK cells on ICAM‐1‐depleted MDA‐MB‐231 cells. In addition, HVJ‐E suppressed tumor growth in MDA‐MB‐231 tumor‐bearing SCID mice, and the HVJ‐E antitumor effect was impaired when NK cells were depleted by treatment with the anti‐asialo GM1 antibody. Our findings suggest that HVJ‐E enhances NK cell sensitivity against cancer cells by increasing ICAM‐1 expression on the cancer cell surface.