Cargando…
Proteome-wide modulation of degradation dynamics in response to growth arrest
In dividing cells, cytoplasmic dilution is the dominant route of clearance for long-lived proteins whose inherent degradation is slower than the cellular growth rate. Thus, as cells transition from a dividing to a nondividing state, there is a propensity for long-lived proteins to become stabilized...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715755/ https://www.ncbi.nlm.nih.gov/pubmed/29133406 http://dx.doi.org/10.1073/pnas.1710238114 |
Sumario: | In dividing cells, cytoplasmic dilution is the dominant route of clearance for long-lived proteins whose inherent degradation is slower than the cellular growth rate. Thus, as cells transition from a dividing to a nondividing state, there is a propensity for long-lived proteins to become stabilized relative to short-lived proteins, leading to alterations in the abundance distribution of the proteome. However, it is not known if cells mount a compensatory response to counter this potentially deleterious proteostatic disruption. We used a proteomic approach to demonstrate that fibroblasts selectively increase degradation rates of long-lived proteins as they transition from a proliferating to a quiescent state. The selective degradation of long-lived proteins occurs by the concurrent activation of lysosomal biogenesis and up-regulation of macroautophagy. Through this mechanism, quiescent cells avoid the accumulation of aged long-lived proteins that would otherwise result from the absence of cytoplasmic dilution by cell division. |
---|