Cargando…
MatchingLand, geospatial data testbed for the assessment of matching methods
This article presents datasets prepared with the aim of helping the evaluation of geospatial matching methods for vector data. These datasets were built up from mapping data produced by official Spanish mapping agencies. The testbed supplied encompasses the three geometry types: point, line and area...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716014/ https://www.ncbi.nlm.nih.gov/pubmed/29206220 http://dx.doi.org/10.1038/sdata.2017.180 |
Sumario: | This article presents datasets prepared with the aim of helping the evaluation of geospatial matching methods for vector data. These datasets were built up from mapping data produced by official Spanish mapping agencies. The testbed supplied encompasses the three geometry types: point, line and area. Initial datasets were submitted to geometric transformations in order to generate synthetic datasets. These transformations represent factors that might influence the performance of geospatial matching methods, like the morphology of linear or areal features, systematic transformations, and random disturbance over initial data. We call our 11 GiB benchmark data ‘MatchingLand’ and we hope it can be useful for the geographic information science research community. |
---|