Cargando…
Ritornello: high fidelity control-free chromatin immunoprecipitation peak calling
With the advent of next generation high-throughput DNA sequencing technologies, omics experiments have become the mainstay for studying diverse biological effects on a genome wide scale. Chromatin immunoprecipitation (ChIP-seq) is the omics technique that enables genome wide localization of transcri...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716106/ https://www.ncbi.nlm.nih.gov/pubmed/28981893 http://dx.doi.org/10.1093/nar/gkx799 |
Sumario: | With the advent of next generation high-throughput DNA sequencing technologies, omics experiments have become the mainstay for studying diverse biological effects on a genome wide scale. Chromatin immunoprecipitation (ChIP-seq) is the omics technique that enables genome wide localization of transcription factor (TF) binding or epigenetic modification events. Since the inception of ChIP-seq in 2007, many methods have been developed to infer ChIP-target binding loci from the resultant reads after mapping them to a reference genome. However, interpreting these data has proven challenging, and as such these algorithms have several shortcomings, including susceptibility to false positives due to artifactual peaks, poor localization of binding sites and the requirement for a total DNA input control which increases the cost of performing these experiments. We present Ritornello, a new approach for finding TF-binding sites in ChIP-seq, with roots in digital signal processing that addresses all of these problems. We show that Ritornello generally performs equally or better than the peak callers tested and recommended by the ENCODE consortium, but in contrast, Ritornello does not require a matched total DNA input control to avoid false positives, effectively decreasing the sequencing cost to perform ChIP-seq. Ritornello is freely available at https://github.com/KlugerLab/Ritornello. |
---|