Cargando…
An experimental investigation on the effect of beam angle optimization on the reduction of beam numbers in IMRT of head and neck tumors
In static intensity‐modulated radiation therapy (IMRT), the fundamental factors that determine the quality of a plan are the number of beams and their angles. The objective of this study is to investigate the effect of beam angle optimization (BAO) on the beam number in IMRT. We used six head and ne...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716515/ https://www.ncbi.nlm.nih.gov/pubmed/22766955 http://dx.doi.org/10.1120/jacmp.v13i4.3912 |
Sumario: | In static intensity‐modulated radiation therapy (IMRT), the fundamental factors that determine the quality of a plan are the number of beams and their angles. The objective of this study is to investigate the effect of beam angle optimization (BAO) on the beam number in IMRT. We used six head and neck cases to carry out the study. Basically the methodology uses a parameter called “Beam Intensity Profile Perturbation Score” (BIPPS) to determine the suitable beam angles in IMRT. We used two set of plans in which one set contains plans with equispaced beam configuration starting from beam numbers 3 to 18, and another set contains plans with optimal beam angles chosen using the in‐house BAO algorithm. We used quadratic dose‐based single criteria objective function as a measure of the quality of a plan. The objective function scores obtained for equispaced beam plans and optimal beam angle plans for six head and neck cases were plotted against the beam numbers in a single graphical plot for effective comparison. It is observed that the optimization of beam angles reduces the beam numbers required to produce clinically acceptable dose distribution in IMRT of head and neck tumors. Especially [Formula: see text] (represents the beam number at which the objective function reaches a value of 0.1) is considerably reduced by beam angle optimization in almost all the cases included in the study. We believe that the experimental findings of this study will be helpful in understanding the interplay between beam angle optimization and beam number selection process in IMRT which, in turn, can be used to improve the performance of BAO algorithms and beam number selection process in IMRT. PACS number: 87.55.de |
---|