Cargando…

Dosimetric properties of a beam quality‐matched 6 MV unflattened photon beam

The purpose of this study was to report the characteristics of an equivalent quality unflattened (eqUF) photon beam in clinical implementation and to provide a generalized method to describe unflattened (UF) photon beam profiles. An unflattened photon beam with a beam quality equivalent to the corre...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yunfei, Siochi, R. Alfredo, Bayouth, John E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716519/
https://www.ncbi.nlm.nih.gov/pubmed/22766941
http://dx.doi.org/10.1120/jacmp.v13i4.3701
Descripción
Sumario:The purpose of this study was to report the characteristics of an equivalent quality unflattened (eqUF) photon beam in clinical implementation and to provide a generalized method to describe unflattened (UF) photon beam profiles. An unflattened photon beam with a beam quality equivalent to the corresponding flat 6 MV photon beam (WF) was obtained by removing the flattening filter from a Siemens ONCOR Avant‐Garde linear accelerator and adjusting the photon energy. A method independent from the WF beam profile was presented to describe UF beam profiles and other selected beam characteristics were examined. The short‐term beam stability was examined by dynamic beam profiles, recorded every 0.072 s in static and gated delivery, and the long‐term stability was evidenced by the five‐year clinical quality assurance records. The dose rate was raised fivefold using the eqUF beam. The depth of maximum dose ([Formula: see text]) shifted 3 mm deeper, but the percent depth dose beyond [Formula: see text] was very similar to that of the WF beam. The surface dose and out‐of‐field dose were lower, but the penumbra was slightly wider. The variation in head scatter and phantom scatter with changes in field size was smaller; the variation in the profile shape with change in depth was also smaller. The eqUF beam is stable 0.072 s after the beam is turned on, and the five‐year beam stability was comparable to that of the WF beam. A fivefold dose rate increase was observed in the eqUF beam with similar beam characteristics to other reported UF beam data except for a deeper [Formula: see text] and a slightly wider penumbra. The initial and long‐term stability of the eqUF beam profile is on parity with the WF beam. The UF beam profile can be described in the generalized method independently without relying on the WF beam profile. PACS number: 87.55.de