Cargando…
Reduced spore germination explains sensitivity of reef-building algae to climate change stressors
Reduced seawater pH and changes in carbonate chemistry associated with ocean acidification (OA) decrease the recruitment of crustose coralline algae (CCAcf.), an important coral-reef builder. However, it is unclear whether the observed decline in recruitment is driven by impairment of spore germinat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716602/ https://www.ncbi.nlm.nih.gov/pubmed/29206887 http://dx.doi.org/10.1371/journal.pone.0189122 |
Sumario: | Reduced seawater pH and changes in carbonate chemistry associated with ocean acidification (OA) decrease the recruitment of crustose coralline algae (CCAcf.), an important coral-reef builder. However, it is unclear whether the observed decline in recruitment is driven by impairment of spore germination, or post-settlement processes (e.g. space competition). To address this, we conducted an experiment using a dominant CCA, Porolithon cf. onkodes to test the independent and combined effects of OA, warming, and irradiance on its germination success and early development. Elevated CO(2) negatively affected several processes of spore germination, including formation of the germination disc, initial growth, and germling survival. The magnitude of these effects varied depending on the levels of temperature and irradiance. For example, the combination of high CO(2) and high temperature reduced formation of the germination disc, but this effect was independent of irradiance levels, while spore abnormalities increased under high CO(2) and high temperature particularly in combination with low irradiance intensity. This study demonstrates that spore germination of CCA is impacted by the independent and interactive effects of OA, increasing seawater temperature and irradiance intensity. For the first time, this provides a mechanism for how the sensitivity of critical early life history processes to global change may drive declines of adult populations of key marine calcifiers. |
---|