Cargando…
Motor deficits are independent of axonopathy in an Alzheimer's disease mouse model of TgCRND8 mice
There have been an increasing number of reports of non-cognitive symptoms in Alzheimer's disease (AD). Some symptoms are associated with the loss of motor functions, e.g. gait disturbances, disturbed activity level and balance. Consistent with clinical findings, several AD mouse models harborin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716700/ https://www.ncbi.nlm.nih.gov/pubmed/29228660 http://dx.doi.org/10.18632/oncotarget.18429 |
_version_ | 1783284003713843200 |
---|---|
author | Yuan, Qiuju Yang, Jian Wu, Wutian Lin, Zhi-Xiu |
author_facet | Yuan, Qiuju Yang, Jian Wu, Wutian Lin, Zhi-Xiu |
author_sort | Yuan, Qiuju |
collection | PubMed |
description | There have been an increasing number of reports of non-cognitive symptoms in Alzheimer's disease (AD). Some symptoms are associated with the loss of motor functions, e.g. gait disturbances, disturbed activity level and balance. Consistent with clinical findings, several AD mouse models harboring amyloid pathology develop motor impairment. Although the factors that contribute to the motor deficits have not yet been determined, it has been suggested that axonopathy is one of the key factors that may contribute to this particular feature of the disease. Our previous study found that TgCRND8 mice exhibited profound motor deficits as early as 3 months old. In this study, we explored the possible factors that may be related to motor deficits in TgCRND8 mice. Results from silver, neurofilament and amyloid precursor protein (APP) staining revealed no axonopathy occurred in the brain and spinal cord of TgCRND8 mice at the age of 3 months. Anterograde labeling of corticospinal tract of spinal cord and electronic microscopy (EM) analysis showed that no axonopathy occurred in TgCRND8 mice at the age of 3 months. According to these results, it could be concluded that no axonal alterations were evident in the TgCRND8 mice when motor deficits was overt. Thus, axonopathy may play a less prominent role in motor deficits in AD. These results suggest that mechanisms by which motor function undergo impairment in AD need to be further studied. |
format | Online Article Text |
id | pubmed-5716700 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-57167002017-12-08 Motor deficits are independent of axonopathy in an Alzheimer's disease mouse model of TgCRND8 mice Yuan, Qiuju Yang, Jian Wu, Wutian Lin, Zhi-Xiu Oncotarget Research Paper There have been an increasing number of reports of non-cognitive symptoms in Alzheimer's disease (AD). Some symptoms are associated with the loss of motor functions, e.g. gait disturbances, disturbed activity level and balance. Consistent with clinical findings, several AD mouse models harboring amyloid pathology develop motor impairment. Although the factors that contribute to the motor deficits have not yet been determined, it has been suggested that axonopathy is one of the key factors that may contribute to this particular feature of the disease. Our previous study found that TgCRND8 mice exhibited profound motor deficits as early as 3 months old. In this study, we explored the possible factors that may be related to motor deficits in TgCRND8 mice. Results from silver, neurofilament and amyloid precursor protein (APP) staining revealed no axonopathy occurred in the brain and spinal cord of TgCRND8 mice at the age of 3 months. Anterograde labeling of corticospinal tract of spinal cord and electronic microscopy (EM) analysis showed that no axonopathy occurred in TgCRND8 mice at the age of 3 months. According to these results, it could be concluded that no axonal alterations were evident in the TgCRND8 mice when motor deficits was overt. Thus, axonopathy may play a less prominent role in motor deficits in AD. These results suggest that mechanisms by which motor function undergo impairment in AD need to be further studied. Impact Journals LLC 2017-06-09 /pmc/articles/PMC5716700/ /pubmed/29228660 http://dx.doi.org/10.18632/oncotarget.18429 Text en Copyright: © 2017 Yuan et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Paper Yuan, Qiuju Yang, Jian Wu, Wutian Lin, Zhi-Xiu Motor deficits are independent of axonopathy in an Alzheimer's disease mouse model of TgCRND8 mice |
title | Motor deficits are independent of axonopathy in an Alzheimer's disease mouse model of TgCRND8 mice |
title_full | Motor deficits are independent of axonopathy in an Alzheimer's disease mouse model of TgCRND8 mice |
title_fullStr | Motor deficits are independent of axonopathy in an Alzheimer's disease mouse model of TgCRND8 mice |
title_full_unstemmed | Motor deficits are independent of axonopathy in an Alzheimer's disease mouse model of TgCRND8 mice |
title_short | Motor deficits are independent of axonopathy in an Alzheimer's disease mouse model of TgCRND8 mice |
title_sort | motor deficits are independent of axonopathy in an alzheimer's disease mouse model of tgcrnd8 mice |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716700/ https://www.ncbi.nlm.nih.gov/pubmed/29228660 http://dx.doi.org/10.18632/oncotarget.18429 |
work_keys_str_mv | AT yuanqiuju motordeficitsareindependentofaxonopathyinanalzheimersdiseasemousemodeloftgcrnd8mice AT yangjian motordeficitsareindependentofaxonopathyinanalzheimersdiseasemousemodeloftgcrnd8mice AT wuwutian motordeficitsareindependentofaxonopathyinanalzheimersdiseasemousemodeloftgcrnd8mice AT linzhixiu motordeficitsareindependentofaxonopathyinanalzheimersdiseasemousemodeloftgcrnd8mice |