Cargando…

Bone marrow stem cells-derived extracellular matrix is a promising material

The extracellular matrix(ECM), which is primarily composed of collagens and proteoglycans, plays a key role in cell proliferation, differentiation, and migration and interactions between cells. In this study, we produced chitosan/gelatin/bone marrow stem cells-derived extracellular matrix(C/G/BMSCs-...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoyan, Chen, Guanghua, Huang, Chao, Tu, Hualei, Zou, Jilong, Yan, Jinglong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716733/
https://www.ncbi.nlm.nih.gov/pubmed/29228693
http://dx.doi.org/10.18632/oncotarget.21683
Descripción
Sumario:The extracellular matrix(ECM), which is primarily composed of collagens and proteoglycans, plays a key role in cell proliferation, differentiation, and migration and interactions between cells. In this study, we produced chitosan/gelatin/bone marrow stem cells-derived extracellular matrix(C/G/BMSCs-dECM) scaffolds via lyophilization and cross-linking, and chitosan/gelatin(C/G) scaffolds were used as controls. For the C/G/BMSCs-dECM scaffolds, the average pore size was 289.17 ± 80.28 μm; the average porosity was 89.25 ± 3.75%; the average compressive modulus was 0.82 ± 0.07 MPa; and the average water uptake ratio was 13.81 ± 1.00. In vitro, the C/G/BMSCs-dECM scaffolds promoted bone marrow stem cells(BMSCs) attachment and proliferation. Moreover, improved osteogenic differentiation was observed for these scaffolds. Thus, C/G/BMSCs-dECM is a promising material for bone tissue engineering.