Cargando…

DEK promoted EMT and angiogenesis through regulating PI3K/AKT/mTOR pathway in triple-negative breast cancer

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer associated with poor prognosis. As an oncogene, DEK involves in regulation of various cellular metabolisms and plays an important role in tumor growth and progression. Increasing evidences suggested that abnormal ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yang, Gao, Meihua, Lin, Zhenhua, Chen, Liyan, Jin, Yu, Zhu, Guang, Wang, Yixuan, Jin, Tiefeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716761/
https://www.ncbi.nlm.nih.gov/pubmed/29228721
http://dx.doi.org/10.18632/oncotarget.21864
Descripción
Sumario:Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer associated with poor prognosis. As an oncogene, DEK involves in regulation of various cellular metabolisms and plays an important role in tumor growth and progression. Increasing evidences suggested that abnormal expression of DEK is closely related to multiple malignant tumors. However, the possible involvement of DEK in epithelial to mesenchymal transition (EMT) and angiogenesis in TNBC remains unclear. In the present study, we revealed that the over-expression of DEK was significantly correlated with clinical stage, differentiation, and lymph node (LN) metastasis of TNBC and indicated poor overall survival of TNBC patients. Moreover, we demonstrated that DEK depletion could significantly reduce cell proliferation, migration, invasion and angiogenesis in vitro. We also found that DEK promoted cancer cell angiogenesis and metastasis by activating the PI3K/AKT/mTOR pathway. Furthermore, we revealed the inhibitory effect of DEK depletion on tumor growth and progression in a xenograft tumor model in mice. These data indicated that DEK promotes TNBC cell proliferation, angiogenesis, and metastasis via PI3K/AKT/mTOR signaling pathway, and therefore, it might be a potential target in TNBC therapy.