Cargando…

Autophagy inhibition sensitizes LY3023414-induced anti-glioma cell activity in vitro and in vivo

PI3K-AKT-mTOR signaling is a valuable treatment target for human glioma. LY3023414 is a novel, highly-potent and pan PI3K-AKT-mTOR inhibitor. Here, we show that LY3023414 efficiently inhibited survival and proliferation of primary and established human glioma cells. Meanwhile, apoptosis activation w...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Lan, Li, Huanyin, Mo, Yanqing, Qi, Gong, Liu, Bin, Zhao, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716781/
https://www.ncbi.nlm.nih.gov/pubmed/29228741
http://dx.doi.org/10.18632/oncotarget.22147
Descripción
Sumario:PI3K-AKT-mTOR signaling is a valuable treatment target for human glioma. LY3023414 is a novel, highly-potent and pan PI3K-AKT-mTOR inhibitor. Here, we show that LY3023414 efficiently inhibited survival and proliferation of primary and established human glioma cells. Meanwhile, apoptosis activation was observed in LY3023414-treated glioma cells. LY3023414 blocked AKT-mTOR activation in human glioma cells. Further studies show that LY3023414 induced feedback activation of autophagy in U251MG cells. On the other hand, autophagy inhibition via adding pharmacological inhibitors or silencing Beclin-1/ATG-5 significantly potentiated LY3023414-induced glioma cell apoptosis. In vivo studies demonstrated that U251MG xenograft tumor growth in mice was suppressed by oral administration of LY3023414. Remarkably, LY3023414's anti-tumor activity was further augmented against the Beclin-1-silenced U251MG tumors. Together, our results suggest that targeting PI3K-AKT-mTOR cascade by LY3023414 inhibits human glioma cell growth in vitro and in vivo. Autophagy inhibition could further sensitize LY3023414 against human glioma cells.