Cargando…
Investigating structural and perfusion deficits due to repeated head trauma in active professional fighters
Repeated head trauma experienced by active professional fighters results in various structural, functional and perfusion damage. However, whether there are common regions of structural and perfusion damage due to fighting and whether these structural and perfusion differences are associated with neu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716952/ https://www.ncbi.nlm.nih.gov/pubmed/29234598 http://dx.doi.org/10.1016/j.nicl.2017.11.013 |
Sumario: | Repeated head trauma experienced by active professional fighters results in various structural, functional and perfusion damage. However, whether there are common regions of structural and perfusion damage due to fighting and whether these structural and perfusion differences are associated with neuropsychological measurements in active professional fighters is still unknown. To that end, T1-weighted and pseudocontinuous arterial spin labeling MRI on a group of healthy controls and active professional fighters were acquired. Voxelwise group comparisons, in a univariate and multivariate sense, were performed to investigate differences in gray and white matter density (GMD, WMD) and cerebral blood flow (CBF) between the two groups. A significantly positive association between global GMD and WMD was obtained with psychomotor speed and reaction time, respectively, in our cohort of active professional fighters. In addition, regional WMD deficit was observed in a cluster encompassing bilateral pons, hippocampus, and thalamus in fighters (0.49 ± 0.04 arbitrary units (a.u.)) as compared to controls (0.51 ± 0.05a.u.). WMD in the cluster of active fighters was also significantly associated with reaction time. Significantly lower CBF was observed in right inferior temporal lobe with both partial volume corrected (46.9 ± 14.93 ml/100 g/min) and non-partial volume corrected CBF maps (25.91 ± 7.99 ml/100 g/min) in professional fighters, as compared to controls (65.45 ± 22.24 ml/100 g/min and 35.22 ± 12.18 ml/100 g/min respectively). A paradoxical increase in CBF accompanying right cerebellum and fusiform gyrus in the active professional fighters (29.52 ± 13.03 ml/100 g/min) as compared to controls (19.43 ± 12.56 ml/100 g/min) was observed with non-partial volume corrected CBF maps. Multivariate analysis with both structural and perfusion measurements found the same clusters as univariate analysis in addition to a cluster in right precuneus. Both partial volume corrected and non-partial volume corrected CBF of the cluster in the thalamus had a significantly positive association with the number of fights. In addition, GMD of the cluster in right precuneus was significantly associated with psychomotor speed in our cohort of active professional fighters. Our results suggest a heterogeneous pattern of structural and CBF deficits due to repeated head trauma in active professional fighters. This finding indicates that investigating both structural and CBF changes in the same set of participants may help to understand the pathophysiology and progression of cognitive decline due to repeated head trauma. |
---|