Cargando…
Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases
BACKGROUND: Machine learning techniques such as support vector machine (SVM) have been applied recently in order to accurately classify individuals with neuropsychiatric disorders such as Alzheimer's disease (AD) based on neuroimaging data. However, the multivariate nature of the SVM approach o...
Autores principales: | Rondina, Jane Maryam, Ferreira, Luiz Kobuti, de Souza Duran, Fabio Luis, Kubo, Rodrigo, Ono, Carla Rachel, Leite, Claudia Costa, Smid, Jerusa, Nitrini, Ricardo, Buchpiguel, Carlos Alberto, Busatto, Geraldo F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716956/ https://www.ncbi.nlm.nih.gov/pubmed/29234599 http://dx.doi.org/10.1016/j.nicl.2017.10.026 |
Ejemplares similares
-
Support vector machine-based classification of neuroimages in Alzheimer’s disease: direct comparison of FDG-PET, rCBF-SPECT and MRI data acquired from the same individuals
por: Ferreira, Luiz K., et al.
Publicado: (2017) -
Neuroimaging in Alzheimer's disease: current role in clinical practice and potential future applications
por: Ferreira, Luiz Kobuti, et al.
Publicado: (2011) -
Aerobic training modulates salience network and default mode network metabolism in subjects with mild cognitive impairment
por: Porto, F.H.G., et al.
Publicado: (2018) -
Diagnosis of Regional Cerebral Blood Flow Abnormalities Using Spect: Agreement between Individualized Statistical Parametric Maps and Visual Inspection by Nuclear Medicine Physicians with Different Levels of Expertise in Nuclear Neurology
por: da Rocha, Euclides Timóteo, et al.
Publicado: (2009) -
SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
por: Sanz, Hector, et al.
Publicado: (2018)