Cargando…
Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer
OBJECTIVES: This retrospective cohort study developed a prognostic model incorporating PET texture analysis in patients with oesophageal cancer (OC). Internal validation of the model was performed. METHODS: Consecutive OC patients (n = 403) were chronologically separated into development (n = 302, S...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717119/ https://www.ncbi.nlm.nih.gov/pubmed/28770406 http://dx.doi.org/10.1007/s00330-017-4973-y |
Sumario: | OBJECTIVES: This retrospective cohort study developed a prognostic model incorporating PET texture analysis in patients with oesophageal cancer (OC). Internal validation of the model was performed. METHODS: Consecutive OC patients (n = 403) were chronologically separated into development (n = 302, September 2010-September 2014, median age = 67.0, males = 227, adenocarcinomas = 237) and validation cohorts (n = 101, September 2014-July 2015, median age = 69.0, males = 78, adenocarcinomas = 79). Texture metrics were obtained using a machine-learning algorithm for automatic PET segmentation. A Cox regression model including age, radiological stage, treatment and 16 texture metrics was developed. Patients were stratified into quartiles according to a prognostic score derived from the model. A p-value < 0.05 was considered statistically significant. Primary outcome was overall survival (OS). RESULTS: Six variables were significantly and independently associated with OS: age [HR =1.02 (95% CI 1.01-1.04), p < 0.001], radiological stage [1.49 (1.20-1.84), p < 0.001], treatment [0.34 (0.24–0.47), p < 0.001], log(TLG) [5.74 (1.44–22.83), p = 0.013], log(Histogram Energy) [0.27 (0.10–0.74), p = 0.011] and Histogram Kurtosis [1.22 (1.04–1.44), p = 0.017]. The prognostic score demonstrated significant differences in OS between quartiles in both the development (X(2) 143.14, df 3, p < 0.001) and validation cohorts (X(2) 20.621, df 3, p < 0.001). CONCLUSIONS: This prognostic model can risk stratify patients and demonstrates the additional benefit of PET texture analysis in OC staging. KEY POINTS: • PET texture analysis adds prognostic value to oesophageal cancer staging. • Texture metrics are independently and significantly associated with overall survival. • A prognostic model including texture analysis can help risk stratify patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00330-017-4973-y) contains supplementary material, which is available to authorized users. |
---|