Cargando…
Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers
Multiple omic profiles have been generated for many cancer types; however, comprehensive assessment of their prognostic values across cancers is limited. We conducted a pan-cancer prognostic assessment and presented a multi-omic kernel machine learning method to systematically quantify the prognosti...
Autores principales: | Zhu, Bin, Song, Nan, Shen, Ronglai, Arora, Arshi, Machiela, Mitchell J., Song, Lei, Landi, Maria Teresa, Ghosh, Debashis, Chatterjee, Nilanjan, Baladandayuthapani, Veera, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717223/ https://www.ncbi.nlm.nih.gov/pubmed/29209073 http://dx.doi.org/10.1038/s41598-017-17031-8 |
Ejemplares similares
-
Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data
por: Shen, Ronglai, et al.
Publicado: (2004) -
Pan-cancer identification of clinically relevant genomic subtypes using outcome-weighted integrative clustering
por: Arora, Arshi, et al.
Publicado: (2020) -
Integrative set enrichment testing for multiple omics platforms
por: Poisson, Laila M, et al.
Publicado: (2011) -
Using somatic variant richness to mine signals from rare variants in the cancer genome
por: Chakraborty, Saptarshi, et al.
Publicado: (2019) -
Pathway analysis reveals functional convergence of gene expression profiles in breast cancer
por: Shen, Ronglai, et al.
Publicado: (2008)