Cargando…
A Universal 3D Voxel Descriptor for Solid-State Material Informatics with Deep Convolutional Neural Networks
Material informatics (MI) is a promising approach to liberate us from the time-consuming Edisonian (trial and error) process for material discoveries, driven by machine-learning algorithms. Several descriptors, which are encoded material features to feed computers, were proposed in the last few deca...
Autores principales: | Kajita, Seiji, Ohba, Nobuko, Jinnouchi, Ryosuke, Asahi, Ryoji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717226/ https://www.ncbi.nlm.nih.gov/pubmed/29209036 http://dx.doi.org/10.1038/s41598-017-17299-w |
Ejemplares similares
-
Search for high-capacity oxygen storage materials by materials informatics
por: Ohba, Nobuko, et al.
Publicado: (2019) -
First-principles prediction of high oxygen-ion conductivity in trilanthanide gallates Ln(3)GaO(6)
por: Lee, Joohwi, et al.
Publicado: (2019) -
Oxygen conduction mechanism in Ca(3)Fe(2)Ge(3)O(12) garnet-type oxide
por: Lee, Joohwi, et al.
Publicado: (2019) -
Discovery of zirconium dioxides for the design of better oxygen-ion conductors using efficient algorithms beyond data mining
por: Lee, Joohwi, et al.
Publicado: (2018) -
Deep learning and convolutional neural networks for medical imaging and clinical informatics
por: Lu, Le, et al.
Publicado: (2019)