Cargando…

Organotypic three-dimensional assays based on human leiomyoma–derived matrices

Alongside cancer cells, tumours exhibit a complex stroma containing a repertoire of cells, matrix molecules and soluble factors that actively crosstalk between each other. Recognition of this multifaceted concept of the tumour microenvironment (TME) calls for authentic TME mimetics to study cancer i...

Descripción completa

Detalles Bibliográficos
Autores principales: Salo, Tuula, Dourado, Mauricio Rocha, Sundquist, Elias, Apu, Ehsanul Hoque, Alahuhta, Ilkka, Tuomainen, Katja, Vasara, Jenni, Al-Samadi, Ahmed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717437/
https://www.ncbi.nlm.nih.gov/pubmed/29158312
http://dx.doi.org/10.1098/rstb.2016.0482
Descripción
Sumario:Alongside cancer cells, tumours exhibit a complex stroma containing a repertoire of cells, matrix molecules and soluble factors that actively crosstalk between each other. Recognition of this multifaceted concept of the tumour microenvironment (TME) calls for authentic TME mimetics to study cancer in vitro. Traditionally, tumourigenesis has been investigated in non-human, three-dimensional rat type I collagen containing organotypic discs or by means of mouse sarcoma-derived gel, such as Matrigel(®). However, the molecular compositions of these simplified assays do not properly simulate human TME. Here, we review the main properties and benefits of using human leiomyoma discs and their matrix Myogel for in vitro assays. Myoma discs are practical for investigating the invasion of cancer cells, as are cocultures of cancer and stromal cells in a stiff, hypoxic TME mimetic. Myoma discs contain soluble factors and matrix molecules commonly present in neoplastic stroma. In Transwell, IncuCyte, spheroid and sandwich assays, cancer cells move faster and form larger colonies in Myogel than in Matrigel(®). Additionally, Myogel can replace Matrigel(®) in hanging-drop and tube-formation assays. Myogel also suits three-dimensional drug testing and extracellular vesicle interactions. To conclude, we describe the application of our myoma-derived matrices in 3D in vitro cancer assays. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.