Cargando…

Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes

Ocean acidification (OA) is predicted to reduce reef coral calcification rates and threaten the long-term growth of coral reefs under climate change. Reduced coral growth at elevated pCO(2) may be buffered by sufficiently high irradiances; however, the interactive effects of OA and irradiance on oth...

Descripción completa

Detalles Bibliográficos
Autores principales: Wall, C. B., Mason, R. A. B., Ellis, W. R., Cunning, R., Gates, R. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717633/
https://www.ncbi.nlm.nih.gov/pubmed/29291059
http://dx.doi.org/10.1098/rsos.170683
_version_ 1783284179859931136
author Wall, C. B.
Mason, R. A. B.
Ellis, W. R.
Cunning, R.
Gates, R. D.
author_facet Wall, C. B.
Mason, R. A. B.
Ellis, W. R.
Cunning, R.
Gates, R. D.
author_sort Wall, C. B.
collection PubMed
description Ocean acidification (OA) is predicted to reduce reef coral calcification rates and threaten the long-term growth of coral reefs under climate change. Reduced coral growth at elevated pCO(2) may be buffered by sufficiently high irradiances; however, the interactive effects of OA and irradiance on other fundamental aspects of coral physiology, such as the composition and energetics of coral biomass, remain largely unexplored. This study tested the effects of two light treatments (7.5 versus 15.7 mol photons m(−2) d(−1)) at ambient or elevated pCO(2) (435 versus 957 µatm) on calcification, photopigment and symbiont densities, biomass reserves (lipids, carbohydrates, proteins), and biomass energy content (kJ) of the reef coral Pocillopora acuta from Kāne‘ohe Bay, Hawai‘i. While pCO(2) and light had no effect on either area- or biomass-normalized calcification, tissue lipids gdw(−1) and kJ gdw(−1) were reduced 15% and 14% at high pCO(2), and carbohydrate content increased 15% under high light. The combination of high light and high pCO(2) reduced protein biomass (per unit area) by approximately 20%. Thus, under ecologically relevant irradiances, P. acuta in Kāne‘ohe Bay does not exhibit OA-driven reductions in calcification reported for other corals; however, reductions in tissue lipids, energy content and protein biomass suggest OA induced an energetic deficit and compensatory catabolism of tissue biomass. The null effects of OA on calcification at two irradiances support a growing body of work concluding some reef corals may be able to employ compensatory physiological mechanisms that maintain present-day levels of calcification under OA. However, negative effects of OA on P. acuta biomass composition and energy content may impact the long-term performance and scope for growth of this species in a high pCO(2) world.
format Online
Article
Text
id pubmed-5717633
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-57176332017-12-29 Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes Wall, C. B. Mason, R. A. B. Ellis, W. R. Cunning, R. Gates, R. D. R Soc Open Sci Biology (Whole Organism) Ocean acidification (OA) is predicted to reduce reef coral calcification rates and threaten the long-term growth of coral reefs under climate change. Reduced coral growth at elevated pCO(2) may be buffered by sufficiently high irradiances; however, the interactive effects of OA and irradiance on other fundamental aspects of coral physiology, such as the composition and energetics of coral biomass, remain largely unexplored. This study tested the effects of two light treatments (7.5 versus 15.7 mol photons m(−2) d(−1)) at ambient or elevated pCO(2) (435 versus 957 µatm) on calcification, photopigment and symbiont densities, biomass reserves (lipids, carbohydrates, proteins), and biomass energy content (kJ) of the reef coral Pocillopora acuta from Kāne‘ohe Bay, Hawai‘i. While pCO(2) and light had no effect on either area- or biomass-normalized calcification, tissue lipids gdw(−1) and kJ gdw(−1) were reduced 15% and 14% at high pCO(2), and carbohydrate content increased 15% under high light. The combination of high light and high pCO(2) reduced protein biomass (per unit area) by approximately 20%. Thus, under ecologically relevant irradiances, P. acuta in Kāne‘ohe Bay does not exhibit OA-driven reductions in calcification reported for other corals; however, reductions in tissue lipids, energy content and protein biomass suggest OA induced an energetic deficit and compensatory catabolism of tissue biomass. The null effects of OA on calcification at two irradiances support a growing body of work concluding some reef corals may be able to employ compensatory physiological mechanisms that maintain present-day levels of calcification under OA. However, negative effects of OA on P. acuta biomass composition and energy content may impact the long-term performance and scope for growth of this species in a high pCO(2) world. The Royal Society Publishing 2017-11-01 /pmc/articles/PMC5717633/ /pubmed/29291059 http://dx.doi.org/10.1098/rsos.170683 Text en © 2017 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Biology (Whole Organism)
Wall, C. B.
Mason, R. A. B.
Ellis, W. R.
Cunning, R.
Gates, R. D.
Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes
title Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes
title_full Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes
title_fullStr Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes
title_full_unstemmed Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes
title_short Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes
title_sort elevated pco(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes
topic Biology (Whole Organism)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717633/
https://www.ncbi.nlm.nih.gov/pubmed/29291059
http://dx.doi.org/10.1098/rsos.170683
work_keys_str_mv AT wallcb elevatedpco2affectstissuebiomasscompositionbutnotcalcificationinareefcoralundertwolightregimes
AT masonrab elevatedpco2affectstissuebiomasscompositionbutnotcalcificationinareefcoralundertwolightregimes
AT elliswr elevatedpco2affectstissuebiomasscompositionbutnotcalcificationinareefcoralundertwolightregimes
AT cunningr elevatedpco2affectstissuebiomasscompositionbutnotcalcificationinareefcoralundertwolightregimes
AT gatesrd elevatedpco2affectstissuebiomasscompositionbutnotcalcificationinareefcoralundertwolightregimes