Cargando…

Sound attenuation in the ear of domestic chickens (Gallus gallus domesticus) as a result of beak opening

Because the quadrate and the eardrum are connected, the hypothesis was tested that birds attenuate the transmission of sound through their ears by opening the bill, which potentially serves as an additional protective mechanism for self-generated vocalizations. In domestic chickens, it was examined...

Descripción completa

Detalles Bibliográficos
Autores principales: Muyshondt, Pieter G. G., Claes, Raf, Aerts, Peter, Dirckx, Joris J. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717687/
https://www.ncbi.nlm.nih.gov/pubmed/29291112
http://dx.doi.org/10.1098/rsos.171286
Descripción
Sumario:Because the quadrate and the eardrum are connected, the hypothesis was tested that birds attenuate the transmission of sound through their ears by opening the bill, which potentially serves as an additional protective mechanism for self-generated vocalizations. In domestic chickens, it was examined if a difference exists between hens and roosters, given the difference in vocalization capacity between the sexes. To test the hypothesis, vibrations of the columellar footplate were measured ex vivo with laser Doppler vibrometry (LDV) for closed and maximally opened beak conditions, with sounds introduced at the ear canal. The average attenuation was 3.5 dB in roosters and only 0.5 dB in hens. To demonstrate the importance of a putative protective mechanism, audio recordings were performed of a crowing rooster. Sound pressures levels of 133.5 dB were recorded near the ears. The frequency content of the vocalizations was in accordance with the range of highest hearing sensitivity in chickens. The results indicate a small but significant difference in sound attenuation between hens and roosters. However, the amount of attenuation as measured in the experiments on both hens and roosters is small and will provide little effective protection in addition to other mechanisms such as stapedius muscle activity.