Cargando…
Risk-aware multi-armed bandit problem with application to portfolio selection
Sequential portfolio selection has attracted increasing interest in the machine learning and quantitative finance communities in recent years. As a mathematical framework for reinforcement learning policies, the stochastic multi-armed bandit problem addresses the primary difficulty in sequential dec...
Autores principales: | Huo, Xiaoguang, Fu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717697/ https://www.ncbi.nlm.nih.gov/pubmed/29291122 http://dx.doi.org/10.1098/rsos.171377 |
Ejemplares similares
-
Introduction to multi-armed bandits
por: Slivkins, Aleksandrs
Publicado: (2019) -
Arm order recognition in multi-armed bandit problem with laser chaos time series
por: Narisawa, Naoki, et al.
Publicado: (2021) -
Multi-Armed Bandits in Brain-Computer Interfaces
por: Heskebeck, Frida, et al.
Publicado: (2022) -
Bandit problems: sequential allocation of experiments
por: Berry, Donald A, et al.
Publicado: (1985) -
Non Stationary Multi-Armed Bandit: Empirical Evaluation of a New Concept Drift-Aware Algorithm
por: Cavenaghi, Emanuele, et al.
Publicado: (2021)