Cargando…
When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts
BACKGROUND: Missing data may seriously compromise inferences from randomised clinical trials, especially if missing data are not handled appropriately. The potential bias due to missing data depends on the mechanism causing the data to be missing, and the analytical methods applied to amend the miss...
Autores principales: | Jakobsen, Janus Christian, Gluud, Christian, Wetterslev, Jørn, Winkel, Per |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717805/ https://www.ncbi.nlm.nih.gov/pubmed/29207961 http://dx.doi.org/10.1186/s12874-017-0442-1 |
Ejemplares similares
-
The thresholds for statistical and clinical significance – a five-step procedure for evaluation of intervention effects in randomised clinical trials
por: Jakobsen, Janus Christian, et al.
Publicado: (2014) -
Power estimations for non-primary outcomes in randomised clinical trials
por: Jakobsen, Janus Christian, et al.
Publicado: (2019) -
Thresholds for statistical and clinical significance in systematic reviews with meta-analytic methods
por: Jakobsen, Janus Christian, et al.
Publicado: (2014) -
Trial Sequential Analysis in systematic reviews with meta-analysis
por: Wetterslev, Jørn, et al.
Publicado: (2017) -
Should multiple imputation be the method of choice for handling missing data in randomized trials?
por: Sullivan, Thomas R, et al.
Publicado: (2016)