Cargando…
Non-Invasive Prostate Cancer Characterization with Diffusion-Weighted MRI: Insight from In silico Studies of a Transgenic Mouse Model
Diffusion-weighted magnetic resonance imaging (DWI) enables non-invasive, quantitative staging of prostate cancer via measurement of the apparent diffusion coefficient (ADC) of water within tissues. In cancer, more advanced disease is often characterized by higher cellular density (cellularity), whi...
Autores principales: | Hill, Deborah K., Heindl, Andreas, Zormpas-Petridis, Konstantinos, Collins, David J., Euceda, Leslie R., Rodrigues, Daniel N., Moestue, Siver A., Jamin, Yann, Koh, Dow-Mu, Yuan, Yinyin, Bathen, Tone F., Leach, Martin O., Blackledge, Matthew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717839/ https://www.ncbi.nlm.nih.gov/pubmed/29250485 http://dx.doi.org/10.3389/fonc.2017.00290 |
Ejemplares similares
-
Accelerating Whole-Body Diffusion-weighted MRI with Deep Learning–based Denoising Image Filters
por: Zormpas-Petridis, Konstantinos, et al.
Publicado: (2021) -
R2* Relaxation Affects Pharmacokinetic Analysis of Dynamic Contrast-Enhanced MRI in Cancer and Underestimates Treatment Response at 7 T
por: Kim, Jana, et al.
Publicado: (2019) -
SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolution Whole-Slide Digital Histopathology Images
por: Zormpas-Petridis, Konstantinos, et al.
Publicado: (2021) -
Superpixel-Based Conditional Random Fields (SuperCRF): Incorporating Global and Local Context for Enhanced Deep Learning in Melanoma Histopathology
por: Zormpas-Petridis, Konstantinos, et al.
Publicado: (2019) -
Identification of Metastasis-Associated Metabolic Profiles of Tumors by (1)H-HR-MAS-MRS()()()
por: Gorad, Saurabh S., et al.
Publicado: (2015)