Cargando…
Cambial response of Norway spruce to modified carbon availability by phloem girdling
We tested the hypothesis that increase in carbon (C) availability in Norway spruce saplings (Picea abies (L.) Karst.) intensifies cambial cell division and increases cell lumen diameter (CLD) and cell wall thickness (CWT) when water availability is adequate. To accomplish this, we experimentally sub...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718295/ https://www.ncbi.nlm.nih.gov/pubmed/28651354 http://dx.doi.org/10.1093/treephys/tpx077 |
Sumario: | We tested the hypothesis that increase in carbon (C) availability in Norway spruce saplings (Picea abies (L.) Karst.) intensifies cambial cell division and increases cell lumen diameter (CLD) and cell wall thickness (CWT) when water availability is adequate. To accomplish this, we experimentally subjected 6-year-old P. abies saplings (n = 80 trees) to two levels of soil humidity (watered versus drought conditions) and manipulated tree C status by physically blocking phloem transport at three girdling dates (GDs). Stem girdling occurred in mid-March (day of the year (doy) 77) and in mid-May (GD doy 138), i.e., ~4 weeks before the onset of bud break and during vigorous stem growth, respectively, and in early July (GD doy 190), i.e., 6 and 4 weeks after cessation of radial growth in drought-stressed trees and shoot growth in both soil humidity (SH) treatments, respectively. In response to phloem blockage a striking increase in the number of xylem cells at all GDs and reactivation of cambial activity in drought-stressed trees was detected above the girdling zone, while below girdling xylem formation stopped in both SH-treatments. Although girdling differently affected wood anatomical parameters (CLD, CWT and CLD:CWT ratio) during earlywood and latewood formation, GD had a minor effect on cambial cell division and xylem cell differentiation. Results also revealed that phloem girdling outweighed drought effects imposed on cambial activity. We explain our findings by accumulation of carbohydrates, osmotically active sugars and/or C based signaling compound(s) in response to girdling. Altogether, we conclude that wood formation in P. abies saplings is limited by C availability, which is most likely caused by high C demand belowground especially under drought. |
---|