Cargando…

ForceGen: atomic covalent bond value derivation for Gromacs

A large number of crystallographic protein structures include ligands, small molecules and post-translational modifications. Atomic bond force values for computational atomistic models of post-translational or non-standard amino acids, metal binding active sites, small molecules and drug molecules a...

Descripción completa

Detalles Bibliográficos
Autores principales: Nash, Anthony, Collier, Thomas, Birch, Helen L., de Leeuw, Nora H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719132/
https://www.ncbi.nlm.nih.gov/pubmed/29214361
http://dx.doi.org/10.1007/s00894-017-3530-6
_version_ 1783284436871151616
author Nash, Anthony
Collier, Thomas
Birch, Helen L.
de Leeuw, Nora H.
author_facet Nash, Anthony
Collier, Thomas
Birch, Helen L.
de Leeuw, Nora H.
author_sort Nash, Anthony
collection PubMed
description A large number of crystallographic protein structures include ligands, small molecules and post-translational modifications. Atomic bond force values for computational atomistic models of post-translational or non-standard amino acids, metal binding active sites, small molecules and drug molecules are not readily available in most simulation software packages. We present ForceGen, a Java tool that extracts the bond stretch and bond angle force values and equilibrium values from the Hessian of a Gaussian vibrational frequency analysis. The parameters are compatible with force fields derived using the second order tensor of the Hessian. The output is formatted with the Gromacs topology in mind. This study further demonstrates the use of ForceGen over the quantum mechanically derived structures of a small organic solvent, a naturally occurring protein crosslink derived from two amino acids following post-translational modification and the amino acid ligands of a zinc ion. We then derive Laplacian bond orders to understand how the resulting force values relate back to the quantum mechanical model. The parameterisation of the organic solvent, toluene, was verified using Molecular Mechanics simulations. The structural data from the simulation compared well with the quantum mechanical structure and the system density compared well with experimental values. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00894-017-3530-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5719132
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-57191322017-12-11 ForceGen: atomic covalent bond value derivation for Gromacs Nash, Anthony Collier, Thomas Birch, Helen L. de Leeuw, Nora H. J Mol Model Original Paper A large number of crystallographic protein structures include ligands, small molecules and post-translational modifications. Atomic bond force values for computational atomistic models of post-translational or non-standard amino acids, metal binding active sites, small molecules and drug molecules are not readily available in most simulation software packages. We present ForceGen, a Java tool that extracts the bond stretch and bond angle force values and equilibrium values from the Hessian of a Gaussian vibrational frequency analysis. The parameters are compatible with force fields derived using the second order tensor of the Hessian. The output is formatted with the Gromacs topology in mind. This study further demonstrates the use of ForceGen over the quantum mechanically derived structures of a small organic solvent, a naturally occurring protein crosslink derived from two amino acids following post-translational modification and the amino acid ligands of a zinc ion. We then derive Laplacian bond orders to understand how the resulting force values relate back to the quantum mechanical model. The parameterisation of the organic solvent, toluene, was verified using Molecular Mechanics simulations. The structural data from the simulation compared well with the quantum mechanical structure and the system density compared well with experimental values. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00894-017-3530-6) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2017-12-06 2018 /pmc/articles/PMC5719132/ /pubmed/29214361 http://dx.doi.org/10.1007/s00894-017-3530-6 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Paper
Nash, Anthony
Collier, Thomas
Birch, Helen L.
de Leeuw, Nora H.
ForceGen: atomic covalent bond value derivation for Gromacs
title ForceGen: atomic covalent bond value derivation for Gromacs
title_full ForceGen: atomic covalent bond value derivation for Gromacs
title_fullStr ForceGen: atomic covalent bond value derivation for Gromacs
title_full_unstemmed ForceGen: atomic covalent bond value derivation for Gromacs
title_short ForceGen: atomic covalent bond value derivation for Gromacs
title_sort forcegen: atomic covalent bond value derivation for gromacs
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719132/
https://www.ncbi.nlm.nih.gov/pubmed/29214361
http://dx.doi.org/10.1007/s00894-017-3530-6
work_keys_str_mv AT nashanthony forcegenatomiccovalentbondvaluederivationforgromacs
AT collierthomas forcegenatomiccovalentbondvaluederivationforgromacs
AT birchhelenl forcegenatomiccovalentbondvaluederivationforgromacs
AT deleeuwnorah forcegenatomiccovalentbondvaluederivationforgromacs