Cargando…
Predicting Unplanned Transfers to the Intensive Care Unit: A Machine Learning Approach Leveraging Diverse Clinical Elements
BACKGROUND: Early warning scores aid in the detection of pediatric clinical deteriorations but include limited data inputs, rarely include data trends over time, and have limited validation. OBJECTIVE: Machine learning methods that make use of large numbers of predictor variables are now commonplace...
Autores principales: | Wellner, Ben, Grand, Joan, Canzone, Elizabeth, Coarr, Matt, Brady, Patrick W, Simmons, Jeffrey, Kirkendall, Eric, Dean, Nathan, Kleinman, Monica, Sylvester, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719228/ https://www.ncbi.nlm.nih.gov/pubmed/29167089 http://dx.doi.org/10.2196/medinform.8680 |
Ejemplares similares
-
Utilizing a transfer of care bundle to reduce unplanned readmissions to the cardiac intensive care unit
por: Storey, Jean, et al.
Publicado: (2018) -
Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units
por: Hsieh, Meng Hsuen, et al.
Publicado: (2018) -
Unplanned extubation in the intensive care unit: what are the consequences?
por: Vianna, A, et al.
Publicado: (2007) -
Single-Stage Surgical Treatment of Multi-ligament Knee Injuries Results in Lower Cost and Fewer Complications and Unplanned Reoperations Compared With Staged Treatment
por: Lau, Brian C., et al.
Publicado: (2022) -
Elements of physics
por: Wellner, Marcel
Publicado: (1991)