Cargando…

Tumor necrosis factor-alpha regulates photoreceptor cell autophagy after retinal detachment

Photoreceptor cell death is the ultimate process underlying many retinal diseases, including retinal detachment (RD). Both autophagy and inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), participate in photoreceptor cell death after RD. In this study, we examined whether TNF-α inhib...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Jia, Zhu, Ruilin, Peng, Yuan, Gao, Wenna, Du, Jiantong, Zhao, Liang, Chi, Ying, Yang, Liu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719449/
https://www.ncbi.nlm.nih.gov/pubmed/29215050
http://dx.doi.org/10.1038/s41598-017-17400-3
Descripción
Sumario:Photoreceptor cell death is the ultimate process underlying many retinal diseases, including retinal detachment (RD). Both autophagy and inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), participate in photoreceptor cell death after RD. In this study, we examined whether TNF-α inhibition would impact the autophagy of photoreceptors and reduce the death of photoreceptors after retinal detachment (RD). RD models were created in C57BL/6J mice by a subretinal injection of 1% hyaluronic acid. The TNF-α inhibitor infliximab was administered via intraperitoneal injection two hours before RD. The levels of TNF-α and the autophagy-related proteins Atg5 and LC3B were assayed by immunofluorescence at 1 day, 3 days, and 7 days following RD. Apoptosis was examined at 3 days post-detachment via TUNEL assays. Photoreceptor cell counts were assessed at 7 days after RD. After RD, the protein levels of LC3B and Atg5 increased and reached a peak at 3 days, which decreased at 7 days. The expression of LC3B and Atg5 was prolonged and increased at a slower rate with TNF-α inhibition. The moderate augmentation and extension of autophagy through TNF-α inhibition resulted in the reduction of apoptosis and the enhancement of photoreceptor cell survival.