Cargando…
Ice age unfrozen: severe effect of the last interglacial, not glacial, climate change on East Asian avifauna
BACKGROUND: The glacial-interglacial cycles in the Pleistocene caused repeated range expansion and contraction of species in several regions in the world. However, it remains uncertain whether such climate oscillations had similar impact on East Asian biota, despite its widely recognized importance...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719578/ https://www.ncbi.nlm.nih.gov/pubmed/29212454 http://dx.doi.org/10.1186/s12862-017-1100-2 |
Sumario: | BACKGROUND: The glacial-interglacial cycles in the Pleistocene caused repeated range expansion and contraction of species in several regions in the world. However, it remains uncertain whether such climate oscillations had similar impact on East Asian biota, despite its widely recognized importance in global biodiversity. Here we use both molecular and ecological niche profiles on 11 East Asian avian species with various elevational ranges to reveal their response to the late Pleistocene climate changes. RESULTS: The ecological niche models (ENM) consistently showed that these avian species might substantially contract their ranges to the south during the Last Interglacial period (LIG) and expanded their northern range margins through the Last Glacial Maximum (LGM), leading to the LGM ranges observed for all 11 species. Consistently, coalescent simulations based on 25–30 nuclear genes retrieved signatures of significant population growth through the last glacial period across all species studied. Climate statistics suggested that high climatic variability during the LIG and a relatively mild climate at the LGM potentially explained the historical population dynamics of these birds. CONCLUSIONS: This is the first study based on multiple species and both lines of ecological niche profiles and genetic data to characterize the unique response of East Asian biota to late Pleistocene climate. The present study highlights regional differences in the evolutionary consequence of climate change during the last glacial cycle and implies that global warming might pose a great risk to species in this region given potentially higher climatic variation in the future analogous to that during the LIG. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12862-017-1100-2) contains supplementary material, which is available to authorized users. |
---|