Cargando…
A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis
This paper proposes a novel Adaptive Region-based Edge Smoothing Model (ARESM) for automatic boundary detection of optic disc and cup to aid automatic glaucoma diagnosis. The novelty of our approach consists of two aspects: 1) automatic detection of initial optimum object boundary based on a Region...
Autores principales: | Haleem, Muhammad Salman, Han, Liangxiu, Hemert, Jano van, Li, Baihua, Fleming, Alan, Pasquale, Louis R., Song, Brian J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719827/ https://www.ncbi.nlm.nih.gov/pubmed/29218460 http://dx.doi.org/10.1007/s10916-017-0859-4 |
Ejemplares similares
-
Regional Image Features Model for Automatic Classification between Normal and Glaucoma in Fundus and Scanning Laser Ophthalmoscopy (SLO) Images
por: Haleem, Muhammad Salman, et al.
Publicado: (2016) -
Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation
por: Suri, Jasjit S., et al.
Publicado: (2022) -
A fully automated approach for baby cry signal segmentation and boundary detection of expiratory and inspiratory episodes
por: Abou-Abbas, Lina, et al.
Publicado: (2017) -
Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images
por: Vermeer, K. A., et al.
Publicado: (2011) -
Medical Image Retrieval Using Vector Quantization and Fuzzy S-tree
por: Nowaková, Jana, et al.
Publicado: (2016)