Cargando…
Prediction on the Seasonal Behavior of Hydrogen Sulfide Using a Neural Network Model
Models to predict seasonal hydrogen sulfide (H(2)S) concentrations were constructed using neural networks. To this end, two types of generalized regression neural networks and radial basis function networks are considered and optimized. The input data for H(2)S were collected from August 2005 to Fal...
Autores principales: | Kim, Byungwhan, Lee, Joogong, Jang, Jungyoung, Han, Dongil, Kim, Ki-Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
TheScientificWorldJOURNAL
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720030/ https://www.ncbi.nlm.nih.gov/pubmed/21552763 http://dx.doi.org/10.1100/tsw.2011.95 |
Ejemplares similares
-
Applied Artificial Neural Network for Hydrogen Sulfide
Solubility in Natural Gas Purification
por: Nimmanterdwong, Prathana, et al.
Publicado: (2021) -
Hydrogen Sulfide in Pharmacotherapy, Beyond the Hydrogen Sulfide-Donors
por: Zaorska, Ewelina, et al.
Publicado: (2020) -
Crystallization Behavior of the Hydrogen Sulfide Hydrate
Formed in Microcapillaries
por: Sun, Jiyue, et al.
Publicado: (2021) -
Hydrogen Sulfide and Hydrogen Sulfide-Synthesizing Enzymes Are Altered in a Case of Oral Adenoid Cystic Carcinoma
por: Dongsoo, Kim, et al.
Publicado: (2018) -
Molecular Functions of Hydrogen Sulfide in Cancer
por: Shackelford, Rodney E., et al.
Publicado: (2021)