Cargando…
Accelerating cross-validation with total variation and its application to super-resolution imaging
We develop an approximation formula for the cross-validation error (CVE) of a sparse linear regression penalized by ℓ(1)-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us t...
Autores principales: | Obuchi, Tomoyuki, Ikeda, Shiro, Akiyama, Kazunori, Kabashima, Yoshiyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720762/ https://www.ncbi.nlm.nih.gov/pubmed/29216215 http://dx.doi.org/10.1371/journal.pone.0188012 |
Ejemplares similares
-
Kernel Estimation Using Total Variation Guided GAN for Image Super-Resolution
por: Park, Jongeun, et al.
Publicado: (2023) -
Accelerated super-resolution imaging with FRET-PAINT
por: Lee, Jongjin, et al.
Publicado: (2017) -
Joint Image Reconstruction and Super-Resolution for Accelerated Magnetic Resonance Imaging
por: Xu, Wei, et al.
Publicado: (2023) -
Image super-resolution and applications
por: Abd el-Samie, Fathi E, et al.
Publicado: (2013) -
Image Super-Resolution and Applications
por: El-Samie, Fathi, et al.
Publicado: (2012)