Cargando…
Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes
Obligate intracellular pathogens satisfy their nutrient requirements by coupling to host metabolic processes, often modulating these pathways to facilitate access to key metabolites. Such metabolic dependencies represent potential targets for pathogen control, but remain largely uncharacterized for...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720825/ https://www.ncbi.nlm.nih.gov/pubmed/29176805 http://dx.doi.org/10.1371/journal.ppat.1006747 |
_version_ | 1783284739830972416 |
---|---|
author | Shah-Simpson, Sheena Lentini, Gaelle Dumoulin, Peter C. Burleigh, Barbara A. |
author_facet | Shah-Simpson, Sheena Lentini, Gaelle Dumoulin, Peter C. Burleigh, Barbara A. |
author_sort | Shah-Simpson, Sheena |
collection | PubMed |
description | Obligate intracellular pathogens satisfy their nutrient requirements by coupling to host metabolic processes, often modulating these pathways to facilitate access to key metabolites. Such metabolic dependencies represent potential targets for pathogen control, but remain largely uncharacterized for the intracellular protozoan parasite and causative agent of Chagas disease, Trypanosoma cruzi. Perturbations in host central carbon and energy metabolism have been reported in mammalian T. cruzi infection, with no information regarding the impact of host metabolic changes on the intracellular amastigote life stage. Here, we performed cell-based studies to elucidate the interplay between infection with intracellular T. cruzi amastigotes and host cellular energy metabolism. T. cruzi infection of non-phagocytic cells was characterized by increased glucose uptake into infected cells and increased mitochondrial respiration and mitochondrial biogenesis. While intracellular amastigote growth was unaffected by decreased host respiratory capacity, restriction of extracellular glucose impaired amastigote proliferation and sensitized parasites to further growth inhibition by 2-deoxyglucose. These observations led us to consider whether intracellular T. cruzi amastigotes utilize glucose directly as a substrate to fuel metabolism. Consistent with this prediction, isolated T. cruzi amastigotes transport extracellular glucose with kinetics similar to trypomastigotes, with subsequent metabolism as demonstrated in (13)C-glucose labeling and substrate utilization assays. Metabolic labeling of T. cruzi-infected cells further demonstrated the ability of intracellular parasites to access host hexose pools in situ. These findings are consistent with a model in which intracellular T. cruzi amastigotes capitalize on the host metabolic response to parasite infection, including the increase in glucose uptake, to fuel their own metabolism and replication in the host cytosol. Our findings enrich current views regarding available carbon sources for intracellular T. cruzi amastigotes and underscore the metabolic flexibility of this pathogen, a feature predicted to underlie successful colonization of tissues with distinct metabolic profiles in the mammalian host. |
format | Online Article Text |
id | pubmed-5720825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57208252017-12-15 Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes Shah-Simpson, Sheena Lentini, Gaelle Dumoulin, Peter C. Burleigh, Barbara A. PLoS Pathog Research Article Obligate intracellular pathogens satisfy their nutrient requirements by coupling to host metabolic processes, often modulating these pathways to facilitate access to key metabolites. Such metabolic dependencies represent potential targets for pathogen control, but remain largely uncharacterized for the intracellular protozoan parasite and causative agent of Chagas disease, Trypanosoma cruzi. Perturbations in host central carbon and energy metabolism have been reported in mammalian T. cruzi infection, with no information regarding the impact of host metabolic changes on the intracellular amastigote life stage. Here, we performed cell-based studies to elucidate the interplay between infection with intracellular T. cruzi amastigotes and host cellular energy metabolism. T. cruzi infection of non-phagocytic cells was characterized by increased glucose uptake into infected cells and increased mitochondrial respiration and mitochondrial biogenesis. While intracellular amastigote growth was unaffected by decreased host respiratory capacity, restriction of extracellular glucose impaired amastigote proliferation and sensitized parasites to further growth inhibition by 2-deoxyglucose. These observations led us to consider whether intracellular T. cruzi amastigotes utilize glucose directly as a substrate to fuel metabolism. Consistent with this prediction, isolated T. cruzi amastigotes transport extracellular glucose with kinetics similar to trypomastigotes, with subsequent metabolism as demonstrated in (13)C-glucose labeling and substrate utilization assays. Metabolic labeling of T. cruzi-infected cells further demonstrated the ability of intracellular parasites to access host hexose pools in situ. These findings are consistent with a model in which intracellular T. cruzi amastigotes capitalize on the host metabolic response to parasite infection, including the increase in glucose uptake, to fuel their own metabolism and replication in the host cytosol. Our findings enrich current views regarding available carbon sources for intracellular T. cruzi amastigotes and underscore the metabolic flexibility of this pathogen, a feature predicted to underlie successful colonization of tissues with distinct metabolic profiles in the mammalian host. Public Library of Science 2017-11-27 /pmc/articles/PMC5720825/ /pubmed/29176805 http://dx.doi.org/10.1371/journal.ppat.1006747 Text en © 2017 Shah-Simpson et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Shah-Simpson, Sheena Lentini, Gaelle Dumoulin, Peter C. Burleigh, Barbara A. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes |
title | Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes |
title_full | Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes |
title_fullStr | Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes |
title_full_unstemmed | Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes |
title_short | Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes |
title_sort | modulation of host central carbon metabolism and in situ glucose uptake by intracellular trypanosoma cruzi amastigotes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720825/ https://www.ncbi.nlm.nih.gov/pubmed/29176805 http://dx.doi.org/10.1371/journal.ppat.1006747 |
work_keys_str_mv | AT shahsimpsonsheena modulationofhostcentralcarbonmetabolismandinsituglucoseuptakebyintracellulartrypanosomacruziamastigotes AT lentinigaelle modulationofhostcentralcarbonmetabolismandinsituglucoseuptakebyintracellulartrypanosomacruziamastigotes AT dumoulinpeterc modulationofhostcentralcarbonmetabolismandinsituglucoseuptakebyintracellulartrypanosomacruziamastigotes AT burleighbarbaraa modulationofhostcentralcarbonmetabolismandinsituglucoseuptakebyintracellulartrypanosomacruziamastigotes |