Cargando…
Development of a Dual Plasma Desorption/Ionization System for the Noncontact and Highly Sensitive Analysis of Surface Adhesive Compounds
We developed a dual plasma desorption/ionization system using two plasmas for the semi-invasive analysis of compounds on heat-sensitive substrates such as skin. The first plasma was used for the desorption of the surface compounds, whereas the second was used for the ionization of the desorbed compo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Mass Spectrometry Society of Japan
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720943/ https://www.ncbi.nlm.nih.gov/pubmed/29234573 http://dx.doi.org/10.5702/massspectrometry.S0075 |
_version_ | 1783284756687880192 |
---|---|
author | Aida, Mari Iwai, Takahiro Okamoto, Yuki Kohno, Satoshi Kakegawa, Ken Miyahara, Hidekazu Seto, Yasuo Okino, Akitoshi |
author_facet | Aida, Mari Iwai, Takahiro Okamoto, Yuki Kohno, Satoshi Kakegawa, Ken Miyahara, Hidekazu Seto, Yasuo Okino, Akitoshi |
author_sort | Aida, Mari |
collection | PubMed |
description | We developed a dual plasma desorption/ionization system using two plasmas for the semi-invasive analysis of compounds on heat-sensitive substrates such as skin. The first plasma was used for the desorption of the surface compounds, whereas the second was used for the ionization of the desorbed compounds. Using the two plasmas, each process can be optimized individually. A successful analysis of phenyl salicylate and 2-isopropylpyridine was achieved using the developed system. Furthermore, we showed that it was possible to detect the mass signals derived from a sample even at a distance 50 times greater than the distance from the position at which the samples were detached. In addition, to increase the intensity of the mass signal, 0%–0.02% (v/v) of hydrogen gas was added to the base gas generated in the ionizing plasma. We found that by optimizing the gas flow rate through the addition of a small amount of hydrogen gas, it was possible to obtain the intensity of the mass signal that was 45–824 times greater than that obtained without the addition of hydrogen gas. |
format | Online Article Text |
id | pubmed-5720943 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Mass Spectrometry Society of Japan |
record_format | MEDLINE/PubMed |
spelling | pubmed-57209432017-12-12 Development of a Dual Plasma Desorption/Ionization System for the Noncontact and Highly Sensitive Analysis of Surface Adhesive Compounds Aida, Mari Iwai, Takahiro Okamoto, Yuki Kohno, Satoshi Kakegawa, Ken Miyahara, Hidekazu Seto, Yasuo Okino, Akitoshi Mass Spectrom (Tokyo) Original Article We developed a dual plasma desorption/ionization system using two plasmas for the semi-invasive analysis of compounds on heat-sensitive substrates such as skin. The first plasma was used for the desorption of the surface compounds, whereas the second was used for the ionization of the desorbed compounds. Using the two plasmas, each process can be optimized individually. A successful analysis of phenyl salicylate and 2-isopropylpyridine was achieved using the developed system. Furthermore, we showed that it was possible to detect the mass signals derived from a sample even at a distance 50 times greater than the distance from the position at which the samples were detached. In addition, to increase the intensity of the mass signal, 0%–0.02% (v/v) of hydrogen gas was added to the base gas generated in the ionizing plasma. We found that by optimizing the gas flow rate through the addition of a small amount of hydrogen gas, it was possible to obtain the intensity of the mass signal that was 45–824 times greater than that obtained without the addition of hydrogen gas. The Mass Spectrometry Society of Japan 2017 2017-12-08 /pmc/articles/PMC5720943/ /pubmed/29234573 http://dx.doi.org/10.5702/massspectrometry.S0075 Text en Copyright © 2017 Mari Aida, Takahiro Iwai, Yuki Okamoto, Satoshi Kohno, Ken Kakegawa, Hidekazu Miyahara, Yasuo Seto, and Akitoshi Okino. http://creativecommons.org/licenses/by/2.5/ This is an open access article distributed under the terms of Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Article Aida, Mari Iwai, Takahiro Okamoto, Yuki Kohno, Satoshi Kakegawa, Ken Miyahara, Hidekazu Seto, Yasuo Okino, Akitoshi Development of a Dual Plasma Desorption/Ionization System for the Noncontact and Highly Sensitive Analysis of Surface Adhesive Compounds |
title | Development of a Dual Plasma Desorption/Ionization System for the Noncontact and Highly Sensitive Analysis of Surface Adhesive Compounds |
title_full | Development of a Dual Plasma Desorption/Ionization System for the Noncontact and Highly Sensitive Analysis of Surface Adhesive Compounds |
title_fullStr | Development of a Dual Plasma Desorption/Ionization System for the Noncontact and Highly Sensitive Analysis of Surface Adhesive Compounds |
title_full_unstemmed | Development of a Dual Plasma Desorption/Ionization System for the Noncontact and Highly Sensitive Analysis of Surface Adhesive Compounds |
title_short | Development of a Dual Plasma Desorption/Ionization System for the Noncontact and Highly Sensitive Analysis of Surface Adhesive Compounds |
title_sort | development of a dual plasma desorption/ionization system for the noncontact and highly sensitive analysis of surface adhesive compounds |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720943/ https://www.ncbi.nlm.nih.gov/pubmed/29234573 http://dx.doi.org/10.5702/massspectrometry.S0075 |
work_keys_str_mv | AT aidamari developmentofadualplasmadesorptionionizationsystemforthenoncontactandhighlysensitiveanalysisofsurfaceadhesivecompounds AT iwaitakahiro developmentofadualplasmadesorptionionizationsystemforthenoncontactandhighlysensitiveanalysisofsurfaceadhesivecompounds AT okamotoyuki developmentofadualplasmadesorptionionizationsystemforthenoncontactandhighlysensitiveanalysisofsurfaceadhesivecompounds AT kohnosatoshi developmentofadualplasmadesorptionionizationsystemforthenoncontactandhighlysensitiveanalysisofsurfaceadhesivecompounds AT kakegawaken developmentofadualplasmadesorptionionizationsystemforthenoncontactandhighlysensitiveanalysisofsurfaceadhesivecompounds AT miyaharahidekazu developmentofadualplasmadesorptionionizationsystemforthenoncontactandhighlysensitiveanalysisofsurfaceadhesivecompounds AT setoyasuo developmentofadualplasmadesorptionionizationsystemforthenoncontactandhighlysensitiveanalysisofsurfaceadhesivecompounds AT okinoakitoshi developmentofadualplasmadesorptionionizationsystemforthenoncontactandhighlysensitiveanalysisofsurfaceadhesivecompounds |