Cargando…

Horizontal ridge reconstruction of the anterior maxilla using customized allogeneic bone blocks with a minimally invasive technique - a case series

BACKGROUND: Different surgical procedures have been proposed to achieve horizontal ridge reconstruction of the anterior maxilla; all these procedures, however, require bone replacement materials to be adapted to the bone defect at the time of implantation, resulting in complex and time-consuming pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Venet, Laurent, Perriat, Michel, Mangano, Francesco Guido, Fortin, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721474/
https://www.ncbi.nlm.nih.gov/pubmed/29216869
http://dx.doi.org/10.1186/s12903-017-0423-0
Descripción
Sumario:BACKGROUND: Different surgical procedures have been proposed to achieve horizontal ridge reconstruction of the anterior maxilla; all these procedures, however, require bone replacement materials to be adapted to the bone defect at the time of implantation, resulting in complex and time-consuming procedures. The purpose of this study was to describe how to use a 3D printed hardcopy model of the maxilla to prepare customized milled bone blocks, to be adapted on the bone defect areas using a minimally invasive subperiosteal tunneling technique. METHODS: Cone beam computed tomography (CBCT) images of the atrophic maxilla of six patients were acquired and modified into 3D reconstruction models. Data were transferred to a 3D printer and solid models were fabricated using autoclavable nylon polyamide. Before the surgery, freeze-dried cortico-cancellous blocks were manually milled and adapted on the 3D printed hardcopy models of the maxillary bone, in order to obtain customized allogeneic bone blocks. RESULTS: In total, eleven onlay customized allogeneic bone grafts were prepared and implanted in 6 patients, using a minimally invasive subperiosteal tunneling technique. The scaffolds closely matched the shape of the defects: this reduced the operation time and contributed to good healing. The patients did not demonstrate adverse events such as inflammation, dehiscence or flap re-opening during the recovery period; however, one patient experienced scaffold resorption, which was likely caused by uncontrolled motion of the removable provisional prosthesis. Following a 6 month healing period, CBCT was used to assess graft integration, which was followed by insertion of implants into the augmented areas. Prosthetic restorations were placed 4 months later. CONCLUSIONS: These observations suggest that customized bone allografts can be successfully used for horizontal ridge reconstruction of the anterior maxilla: patients demonstrated reduced morbidity and decreased total surgery time. Further studies on a larger sample of patients, with histologic evaluation and longer follow-up are needed to confirm the present observations.