Cargando…
Supervised learning for infection risk inference using pathology data
BACKGROUND: Antimicrobial Resistance is threatening our ability to treat common infectious diseases and overuse of antimicrobials to treat human infections in hospitals is accelerating this process. Clinical Decision Support Systems (CDSSs) have been proven to enhance quality of care by promoting ch...
Autores principales: | Hernandez, Bernard, Herrero, Pau, Rawson, Timothy Miles, Moore, Luke S. P., Evans, Benjamin, Toumazou, Christofer, Holmes, Alison H., Georgiou, Pantelis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721579/ https://www.ncbi.nlm.nih.gov/pubmed/29216923 http://dx.doi.org/10.1186/s12911-017-0550-1 |
Ejemplares similares
-
Supervised machine learning to support the diagnosis of bacterial infection in the context of COVID-19
por: Rawson, Timothy M, et al.
Publicado: (2021) -
Resistance Trend Estimation Using Regression Analysis to Enhance Antimicrobial Surveillance: A Multi-Centre Study in London 2009–2016
por: Hernandez, Bernard, et al.
Publicado: (2021) -
Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: a qualitative study
por: Rawson, Timothy Miles, et al.
Publicado: (2016) -
Development of a patient-centred intervention to improve knowledge and understanding of antibiotic therapy in secondary care
por: Rawson, Timothy M., et al.
Publicado: (2018) -
Closed-loop control of continuous piperacillin delivery: An in silico study
por: Herrero, Pau, et al.
Publicado: (2022)