Cargando…
Continuous outcome logistic regression for analyzing body mass index distributions
Body mass indices (BMIs) are applied to monitor weight status and associated health risks in populations. Binary or multinomial logistic regression models are commonly applied in this context, but are only applicable to BMI values categorized within a small set of defined ad hoc BMI categories. Th...
Autores principales: | Lohse, Tina, Rohrmann, Sabine, Faeh, David, Hothorn, Torsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721934/ https://www.ncbi.nlm.nih.gov/pubmed/29259768 http://dx.doi.org/10.12688/f1000research.12934.1 |
Ejemplares similares
-
Is body weight dissatisfaction a predictor of depression independent of body mass index, sex and age? Results of a cross-sectional study
por: Richard, Aline, et al.
Publicado: (2016) -
Heavy Smoking Is More Strongly Associated with General Unhealthy Lifestyle than Obesity and Underweight
por: Lohse, Tina, et al.
Publicado: (2016) -
Primer on binary logistic regression
por: Harris, Jenine K
Publicado: (2021) -
GTB-PPI: Predict Protein–protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting
por: Yu, Bin, et al.
Publicado: (2020) -
CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model
por: Wang, Liguo, et al.
Publicado: (2013)